Biaryls in Nature and Synthetic Approaches to Axial Chirality

Frontiers of Chemistry 3/11/06 Erikah Englund

M.C.Escher's Drawing Hands

Outline

- Axial chirality in context
- Biaryls in nature
- Synthetic approaches to biaryl axial chirality
 - Classical
 - Selective conversion of pro-stereogenic biaryls
 - Generation of second aromatic ring
- Conclusion

Timeline of Chirality

- 1848: Louis Pasteur studied the enantiomers of tartaric acid while investigating the mechanism by which wine goes sour.
- **1874**: Van't Hoff proposed the tetrahedral carbon
- **1922:** Christie and Kenner first accurately described axial chirality (J.Chem.Soc. 1922, 121, 614)
- **1933**: Kuhn coined the term atropisomer (a=not, tropos=turn). Originally only referred to biaryl compounds (Stereochemie, Frans Deuticke, Leipzig, 1933)

Kaufler's explanation for axial chirality (*Ann*. **1907**, *151*, 351)

Features of Chiral Biaryl Atropisomers

- Stability/rotational barrier factors (a half life of 16.7 min (1,000 s) is considered physically separable):
 - Sterics (I>Br>Me>Cl>NO₂>CO₂H>OMe>F>H)
 - 3 or 4 ortho substituents generally form stable atropisomers
 - Existence, length and rigidity of bridges
 - 5 membered rings freely rotate at r.t.
 - Atropisomerization mechanisms
 - Physical (e.g. heat)
 - Photochemical
 - Chemically induced
- Chirality criteria:
 - Different substituents on both sides of the axis (A≠B and A'≠B')

4

- Presence and location of hetero-atoms
- Different meta substituents

R

B'

Α'

Assignment of Chirality

chirality in biaryl compounds (priority: A > B):

prochirality in biaryl compounds:

Angew.Chem.Int.Ed. 2005, 44, 5384

Biological Activity

- Gossypol (from *gossypium hirsutum* seeds)
 - Discovered in 1899 (absolute stereochemistry determined in 1988)
 - The (-) enantiomer is either the major or sole possessor of the following biological activity:

6

- Anti-fertility
- Anti-tumor
- Anti-amoebic
- Anti-HIV

Biological Activity (cont.)

 Antimicrobial Teicoplanin (actinoplanes teichomyceticus)

- 2-8 fold more potent than vancomycin and less cytotoxic
- The biological activity of the DE ring atropisomer was 50 fold less active than the parent compound in antimicrobial and cell free binding assays

(Boger JACS, 2000, 122, 10047)

Biosynthetic Pathways

Oxidative phenolic coupling

coupled biaryls

D Polyketide cyclization

Bringmann, Progress in the Chemistry of Organic Natural Products Vol. 82, 2001, 1-249

Biosynthetic Pathways (cont.)

Diels-Alder

Aldol type cyclizations

Biaryls in Nature

Wherever in nature phenolic aromatics can be found- be they derived from polyketide precursors, from aromatic amino acids and/or shikimic acid, or from terpenoids- the corresponding homo- or hetero-dimeric biaryls have to be expected.

Bringmann

Progress in the Chemistry of Organic Natural Products **2001**, Vol. 82, 3

Biaryl Ligands

Ligand Review: Tetrahedron 2001, 57, 3809

Synthesis

- Classic concept"
 - C-C bond formation between two aryl systems with simultaneous asymmetric induction
- Transformation of a "pro-chiral" biaryl system into a chiral system through chemical transformation
 - Desymmetrization
- Generation of second aromatic ring from nonaromatic precursor with simultaneous generation of desired chirality

I. Classical Approaches

- Diastereoselective approaches:
 - Chiral bridge linking the two coupling partners
 Bridge might or might not be present in final product
 - Chiral auxiliary on the arene (usually ortho position)
 - Incorporation of removable chiral unit (η⁶ chromium complex)
- Enantioselective approaches:
 - Chiral leaving group
 - Metal based reagents and chiral ligands

Classical Approach- chiral tethers

Pioneering Work: (Miyano, Bull. Chem. Soc. Jpn. 1981, 54, 3522)

Modifications: (Lipshutz, Angew. Chem. Int. Ed. Engl. **1994**, 33, 1842)

Additional Tethers

□ Acetonide (Lipshutz, Tetrahedron Lett. **1997**, 38, 753)

Designed to allow access to BINOL derivatives

□ Lactone (Waldvogel, Angew. Chem. Int. Ed. 2002, 41, 2981)

Structural motif in biologically active lignans (Charlton, J.Nat.Prod, 1998, 61, 1447)

Schreiber's application to DOS

- A library of axially chiral biaryls (>400) was synthesized to screen for biological activity (Schreiber, JACS, 2000, 122, 5656)
 - The kinetic product could be converted to the other atropodiastereomer by heating for 2 days.

Schreiber's DOS results

- 9 and 10-membered rings were synthesized (Org. Lett, 2004, 6, 4021)
- These analogues were submitted to protein-binding, chemical genetic, and phenotype assays.
- When entry I was tested in zebrafish, the P isomer had no activity while the M isomer affected the cardiovascular system during development (J.A.C.S, 2002, 124, 1354)

Total Synthesis Applications- Vancomycin

Boger (*JACS*, **1999**, *121*, 3226)

95:5

1:1 ---- 3:1

Vancomycin Derivatives

Boger
 (J. Am. Chem. Soc. 2006; 128; 2885)

- The A-B ring system was constructed in the same fashion as the parent compound (Suzuki coupling followed by thermal equilibration)
- Ultimately, 5 exhibited antimicrobial activity against VanA-resistant microorganisms

Vancomycin- Chiral Ligands

□ Nicolaou (Chem. Eur. J. 1999, 5, 2584-2601)

Pd₂(OAc)₂, Na₂CO₃

+ atropisomer

Entry	Ligand	Solvent	Temp	Time (h)	Yield	Ratio
1	PH ₃ P	PhMe	90	2	80	1:1
2	BINAP	PhMe	90	12	Trace	-
3	BINAP	THF	65	12	Trace	-
4	S-BINAP	DMF	80	8	60	2.3:1
5	S-BINAP	PhMe:THF (1:1)	70	5	40	95:5
6	R-BINAP	PhMe:THF(1:1)	70	5	40	5:95

Chiral Ortho Substituents

- Oxazoline and asymmetric
 Grignard addition (Meyers, JACS, 1985, 107, 682)
 - Grignard reagent essential
 - Low selectivity with aryllithium
 - Good yields of tri-ortho substituted products.
 Tetra-ortho substituted products are produced in low yields
 - R' and R''= Me, OMe, OMOM or OTBS, R=Ph

Chiral Ortho Substituents (cont.)

- □ Suzuki (Colobert, Org. Lett. 2003, 5, 3281)
 - Methoxy protection of chiral aux prevents hydrodehalogenation of substrate

- Mechanistic studies (Colobert, Org.Lett, 2005, 7, 3737)
 - **Diastereoselectivity** when SO_2pTol is replaced with:
 - H=60/40
 - OMe or OBn=70/30
 - NMe₂ = <95/5</p>
 - Proposed palladacycle intermediate:

Removable Chiral Unit

Chromium complex (Uemura, Synlett 2000, 938-949)

Used in:

□ Pinacol coupling with SmI₂ (J.O.C. 1996, 61, 6088)

□ Enantiotopic lithiation (J.O.C. 2002, 67, 1929)

Suzuki coupling (Org. Lett. 2001, 3, 2033)

- Accelerates oxidative addition to aryl halide
- Poor yields when chromium complexed to aryl boronic acid
- Chromium removed through photooxidative demetalation
- Disadvantages:

laborious to get to single enantiomer of chromium complex
 toxic

Removable Chiral Unit

- Ruthenium complex (Uemura, Org.Lett. 2001, 3, 3667)
 - Single diastereomer
 - Reagents: (a) BH₃·Me₂S, (S)-oxazaborolidine b), (b) Pd(OAc)₂, (c) [CpRu(CH₃CN)₃]PF6, (CH₂Cl)₂, reflux, (51%), (d) NaOMe, MeOH, (98%), (e) hv, CH₃CN, (95%).

- Cyclophanes (Miyano *Tetrahedron Lett.* 1996, 37, 2057-2060)
 - Used with Grignard reagents
 - 82-85% yield and 91-99% ee

Enantioselective Approaches

Chiral leaving group:

- Initial studies found yields: 7-83% and optical purities: 10-95% (Wilson and Cram, J. Am. Chem. Soc. 1982, 104, 881-884)
- Later work with menthyl: (Miyano, J. Chem. Soc. Perkin Trans. 1 1994, 2273-2282)

- Chiral Lithium (Tomioka, J. Am. Chem. Soc. 1992, 114, 8732-8733)
 - X=F, OMe, or OEt. Yield=81-99%, ee=82-90%

Oxidative Homocoupling

Metal based with chiral ligand

- First report: Cu(II)(NO₃)₂.3H₂O with chiral amine ligands (Wynberg and Feringa, *Bioorganic Chemistry*, 1978, 7, 397-408)
 R¹=H, 1-8% ee; R¹=ester, 6-16% ee
- Copper and 1,5, diazacis-decalin (Kozlowski, JOC, 2003, 68, 5500)
 - □ **R**¹=H, 4-18% *ee*; **R**¹=ester, 56-94% *ee*
- Photochemical with chiral ruthenium salen catalyst (Katsuki, Synlett 2000, 1433-1436)
 - □ **R**²=H, 65% *ee*; **R**²=OMe, 33% *ee*, **R**²=methyl ester, 0% ee
- Vanadium catalyzed (Angew. Chem. Int. Ed. 2002, 41, 4532-4535)
 - □ **R**¹=H, 89% ee; **R**¹=Br, 88% ee
- Electrochemical (Osa, J. Chem. Soc. Chem. Commun. 1994, 2535-2)
 - □ **R**¹=H, 99% ee
 - Works with both free alcohol and methyl ether

Redox Neutral Cross Coupling

Enantioselective examples include:

- **Kumada coupling** (Hayashi, J. Am. Chem. Soc. **1988**, 110, 8153-8156)
 - Ni or Pd catalyzed with ferrocene derived ligand
 - 40-84 % yield and 16-83 % ee
 - Coupled naphthalenes with Me or Et substituents
- □ Suzuki cross coupling (Buchwald, J. Am. Chem. Soc. 2000, 122, 12051)
 - 40-87% yield and 71-95 % ee
 - Conditions compatible with phosphonate and OMe substituents
- Currently, no examples of asymmetric:
 - Stille
 - Negishi

Buchwald Coupling Conditions

- 3a R=Et
- 3b R=Me
- 4a X=I
- 4b X=Br
- 4c X=Cl

3

X

4

 NO_2

Erikah Englund @ Wipf Group

Redox Neutral Cross Coupling (cont.)

- Advantages:
 - Not restricted to specific substitution patterns
 - Allow regioselective cross coupling of 2 different coupling partners
 - Generally, mild reaction conditions
 - Source of chiral information can be used catalytically
- Disadvantages:
 - No standard protocol (time consuming optimization)
 - Long reaction times (sometimes up to 1 week)

II. Modification of Pro-stereogenic Biaryls

- Generation of axially chirality through reaction with "prochiral" biaryl unit
 - Biaryl axis formed, chirality introduced later

- **Two possible situations:**
 - Rotationally hindered but achiral
 - Chiral, but configurationally unstable

Desymmetrization of Biaryls

First example of biaryl enzymatic desymmetrization (Matsumoto, Synlett, 2002, 122)

Review: Chem. Rev. 2005, 105, 313

Carbonylation (Raston, J. Chem. Soc. Dalton Trans. 1988, 2403-2409)

Desymmetrization in Cross Coupling

- Asymmetric Grignard cross coupling (Hayashi, J. Am. Chem. Soc. 1995, 117, 9101-9102)
 - Other triflate still available to react (converted to phosphonate (229) or ester)

Desymmetrization through Bridge Formation

Early work: 82 % overall yield (Harada, J. Org. Chem. 2000, 65, 1335)

Improvement: (*Org. Lett.* **2000**, *2*, 1319)

Using Cs₂CO₃, as the base, 8 could be obtained in 66% as a single diastereomer and 9 in only 7%.

Erikah Englund @ Wipf Group

Desymmetrization in Total Synthesis

□ Total synthesis of anti-inflammatory **A-240610.0,1** (Ku, J. Am. Chem. Soc. **2002**, 124, 4282)

Single atropisomer was needed for efficient etherification

Axial Chirality through Ring Cleavage

□ Lactones (Bringmann, Acc. Chem. Res. 2001, 34, 615)

□ The biaryl lactone is configurationally unstable

- Opening the lactone with chiral nucleophiles can selectively provide the appropriate axial chirality
 - **CBS** (Brigmann, *Org. Synth.* **2002**, *7*9, 72-83)
 - **Sodium menthoxide** (Bringmann, Chem. Eur. J. **1999**, 5, 3029)
- Drawback: Biaryls posessing a β-keto and β-hydroxy functionality readily racemize. β –ketosulfoxides and chiral c-nucleophiles can not be utilized

Configurationally unstable

Ortho Selective Reactions

- C-H activation
 (Murai, Tetrahedron: Asymmetry 2000, 11, 2647)
- Starting material freely rotates.
 Alkylating the ortho position results in isolable atropisomers

^aReaction conditions: biaryl compound (0.5 mmol), ethylene (7 kg/cm²), [RhCl(coe)₂]₂ (0.025 mmol), ligand (0.15 mmol), toluene (2.5 mL), 120 °C, 20 h. ^bAll enantioselectivities were determined by HPLC analysis on a Daicel OD-H column. ^oThe biaryl compound **1** was recovered in 52% yield. ^dThe reaction was carried out at 60 °C for 72 h. ^aThe biaryl compound **1** was recovered in 90% yield. ^fRu(cod)(cot) and (*R*),(*S*)-PPFOMe catalyst system was used. ^gThe biaryl compound **1** was recovered in 67% yield. ^hThe biaryl compound **1** was recovered in 45% yield.

Ortho Selective Reactions

- □ N-oxide formation (Hayashi, J. Org. Chem. 2003, 68, 6329)
 - The initially coupled product could be converted cleanly to the other atropisomer through heating in toluene for 48 h
 - N-oxide formation with MCPBA followed by chiral auxiliary removal affords the stable atropisomers

Erikah Englund @ Wipf Group

III. Second Aromatic Ring Generation

- Generation of chiral biaryls through formation of second aromatic ring
 - One of the newest methodologies to generate axial chirality
 - Chirality achieved through:
 - Metal catalyzed cyclization (chiral ligand source of chirality)
 - Central to axial chirality transfer

Chiral Pyridines

□ [2+2+2] cyclization under photochemical conditions (Gutnov and Heller, Angew. Chem. Int. Ed. 2004, 43, 3795)

A series of chiral cobal catalysts were screened. Catalyst 5 afforded the highest ee's

Chiral pyridines (cont.)

- Little temperature dependence (82% ee at 20 °C, 89% ee at 3 °C)
- No observed solvent dependence
- When alkyne not tethered, yields were 2-33% and ee's 32-63% (compared to 74-80%)
- Proposed source of selectivity:

Cyclization

- Iridium catalyzed [2+2+2] cyclization (Shibata, J. Am. Chem. Soc., 2004, 126, 8382)
 - 74-97% yield and ee s in the 90's
 - This methodology could also be applied to biaryls (81% ee)
 - Ether linkage was successfully replaced with:
 - Alkene
 - Methylene
 - Nitrogen

Cyclization (cont.)

- Cross Cyclotrimerization (TanakaOrg. Lett, 2005, 7, 3119)
- 61-89% yield,
 84-96 % ee
- Br, Cl, Me, Et and naphtyl varieties were synthesized

Chirality Exchange

Chiral a-naphthalenes (Nishii and Tanabe, J. Am. Chem. Soc., 2004, 126, 5358)

- □ 47-97% yield, >99% ee
- \square R1 = CI, OMe, Me, R2 = H, CI, Me

Chirality Exchange (cont.)

Binaphthalene synthesis (Hattori and Miyano Tetrahedron Lett. 2001, 42, 8035-8038)

Carbenes

- Chirality controlled by:
 - Chiral bridges (Wulff, J. Am. Chem. Soc. 1996, **118**, 2166-2181)

Stereogenic centers in the ortho position (Wulff, J. Am. Chem. Soc. 2002, 124, 6512-6513) 47-73 %. Either only II detected or 13:1 (II:1)

Conclusion

- Axially chiral biaryls are an important structural element in many natural products and can greatly influence biological activity
- Axial chirality has been recognized for nearly 80 years, but the synthetic tools are still in their infancy. There are many methods whose scope haven't been fully explored
- The synthetic methods developed (*classical, prostereogenic modification and aromatic ring generation*) have issues that need to be overcome to permit wider application
 - Substrate generality (formation of both bi-naphthalenes and biaryls)
 - Standardized reaction conditions (less time on optimization)
 - Functional group tolerance