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Timeline of Chirality

 1848: Louis Pasteur studied the
enantiomers of tartaric acid
while investigating the
mechanism by which wine goes
sour.

 1874: Van’t Hoff proposed the
tetrahedral carbon

 1922: Christie and Kenner first
accurately described axial
chirality (J.Chem.Soc. 1922, 121, 614)

 1933: Kuhn coined the term
atropisomer (a=not,
tropos=turn).  Originally only
referred to biaryl compounds
(Stereochemie, Frans Deuticke, Leipzig, 1933)
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Kaufler’s explanation for axial chirality
(Ann. 1907, 151, 351)
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Features of Chiral Biaryl Atropisomers

 Stability/rotational barrier factors (a half life of 16.7 min
(1,000 s) is considered physically separable):

 Sterics (I>Br>Me>Cl>NO2>CO2H>OMe>F>H)

 3 or 4 ortho substituents generally form stable
atropisomers

 Existence, length and rigidity of bridges
 5 membered rings freely rotate at r.t.

 Atropisomerization mechanisms
 Physical (e.g. heat)
 Photochemical
 Chemically induced

 Chirality criteria:
 Different substituents on both sides of the axis (A≠B and

A’≠B’)
 Presence and location of hetero-atoms
 Different meta substituents

A B

A' B'

Angew.Chem.Int.Ed. 2005, 44, 5384
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Assignment of Chirality

Angew.Chem.Int.Ed. 2005, 44, 5384

M=Minus
P=Plus
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Biological Activity

 Gossypol (from gossypium hirsutum seeds)
 Discovered in 1899 (absolute stereochemistry determined in 1988)
 The (-) enantiomer is either the major or sole possessor of the

following biological activity:
 Anti-fertility
 Anti-tumor
 Anti-amoebic
 Anti-HIV
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OHCHO
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HO

Phytochemistry,1991, 30, 2655
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Biological Activity (cont.)

 Antimicrobial Teicoplanin
(actinoplanes teichomyceticus)

 2-8 fold more potent than
vancomycin and less
cytotoxic

 The biological activity of
the DE ring atropisomer
was 50 fold less active
than the parent compound
in antimicrobial and cell
free binding assays

     (Boger JACS, 2000, 122, 10047)
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Biosynthetic Pathways

 Oxidative phenolic coupling

 Polyketide cyclization

OH O O O O O

 Bringmann, Progress in the Chemistry of Organic Natural Products Vol. 82, 2001, 1-249
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Biosynthetic Pathways (cont.)
 Diels-Alder

 Aldol type cyclizations
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Biaryls in Nature

 Wherever in nature phenolic aromatics can be found- be
they derived from polyketide precursors, from aromatic
amino acids and/or shikimic acid, or from terpenoids- the
corresponding homo- or hetero–dimeric biaryls have to be
expected.

 Bringmann
 Progress in the Chemistry of Organic Natural Products 2001, Vol. 82, 3
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Biaryl Ligands

Ligand Review: Tetrahedron 2001, 57, 3809
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Synthesis

 “Classic concept”
 C-C bond formation between two aryl systems with

simultaneous asymmetric induction

 Transformation of  a “pro-chiral” biaryl system into a chiral
system through chemical transformation
 Desymmetrization

 Generation of second aromatic ring from nonaromatic
precursor with simultaneous generation of desired chirality
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I. Classical Approaches

 Diastereoselective approaches:
 Chiral bridge linking the two coupling partners

 Bridge might or might not be present in final product
 Chiral auxiliary on the arene (usually ortho position)
 Incorporation of removable chiral unit (η6 chromium

complex)

 Enantioselective approaches:
 Chiral leaving group
 Metal based reagents and chiral ligands

Aryl-aryl bond formation review: Hassan, Chem.Rev.2002, 102, 1359
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Classical Approach- chiral tethers

 Pioneering Work: (Miyano, Bull. Chem. Soc. Jpn. 1981, 54, 3522)

 Modifications: (Lipshutz, Angew. Chem. Int. Ed. Engl. 1994, 33, 1842)
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Additional Tethers

 Acetonide (Lipshutz, Tetrahedron Lett. 1997, 38, 753)

 Designed to allow access to BINOL derivatives

 Lactone (Waldvogel, Angew. Chem. Int. Ed. 2002, 41, 2981)

 Structural motif in biologically active lignans (Charlton, J.Nat.Prod, 1998, 61, 1447)
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Schreiber’s application to DOS

 A library of axially chiral biaryls (>400) was synthesized to
screen for biological activity
(Schreiber, JACS, 2000, 122, 5656)

 The kinetic product could be converted to the other atropodiastereomer
by heating for 2 days.
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Schreiber’s DOS results

 9 and 10-membered rings
were synthesized (Org. Lett, 2004,
6, 4021)

 These analogues were
submitted to protein-binding,
chemical genetic, and
phenotype assays.

 When entry l was tested in
zebrafish, the P isomer had
no activity while the M isomer
affected the cardiovascular
system during development
(J.A.C.S, 2002, 124, 1354)
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Total Synthesis Applications- Vancomycin

 Evans (JACS, 1993, 115, 6426)

 Boger (JACS, 1999, 121, 3226)
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Vancomycin Derivatives

 Boger
(J. Am. Chem. Soc. 2006; 128; 2885)

 The A-B ring system was
constructed in the same
fashion as the parent
compound (Suzuki
coupling followed by
thermal equilibration)

 Ultimately, 5 exhibited
antimicrobial activity
against VanA-resistant
microorganisms
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Vancomycin- Chiral Ligands

 Nicolaou (Chem. Eur. J. 1999, 5, 2584-2601)
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Chiral Ortho Substituents

 Oxazoline and asymmetric
Grignard addition (Meyers, JACS,
1985, 107, 682)

 Grignard reagent essential
 Low selectivity with

aryllithium
 Good yields of tri-ortho

substituted products.
Tetra-ortho substituted
products are produced in
low yields

 R’ and R’’= Me, OMe, OMOM
or OTBS, R=Ph
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Chiral Ortho Substituents (cont.)

 Suzuki (Colobert, Org. Lett. 2003, 5, 3281)

 Methoxy protection of chiral aux prevents hydrodehalogenation of
substrate

 Mechanistic studies (Colobert, Org.Lett, 2005, 7, 3737)

 Diastereoselectivity when SO2pTol is replaced with:
 H=60/40
 OMe or OBn=70/30
 NMe2=<95/5

 Proposed palladacycle intermediate:
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Removable Chiral Unit

 Chromium complex (Uemura, Synlett 2000, 938-949 )

 Used in:
 Pinacol coupling with SmI2 (J.O.C. 1996, 61, 6088)

 Enantiotopic lithiation (J.O.C. 2002, 67, 1929)

 Suzuki coupling (Org. Lett. 2001, 3, 2033)

 Accelerates oxidative addition to aryl halide
 Poor yields when chromium complexed to aryl boronic

acid
 Chromium removed through photooxidative demetalation
 Disadvantages:

 laborious to get to single enantiomer of chromium complex
 toxic

Cr(CO)3

Br

R1 R2
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Removable Chiral Unit

 Ruthenium complex (Uemura, Org.Lett.
2001, 3, 3667)

 Single diastereomer

 Reagents: (a) BH3·Me2S, (S)-oxazaborolidine b), (b)
Pd(OAc)2, (c) [CpRu(CH3CN)3]PF6, (CH2Cl)2, reflux,
(51%), (d) NaOMe, MeOH, (98%), (e) hv, CH3CN,
(95%).

 Cyclophanes (Miyano Tetrahedron Lett. 1996,
37, 2057-2060)

 Used with Grignard reagents
 82-85% yield and 91-99% ee

O

O
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Enantioselective Approaches

 Chiral leaving group:
 Initial studies found yields: 7-83% and optical purities: 10-95%  (Wilson and

Cram, J. Am. Chem. Soc. 1982, 104, 881-884)

 Later work with menthyl:(Miyano, J. Chem. Soc. Perkin Trans. 1 1994, 2273-2282)

 Chiral Lithium (Tomioka, J. Am. Chem. Soc. 1992, 114, 8732-8733)

 X=F, OMe, or OEt.  Yield=81-99%, ee=82-90%
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Oxidative Homocoupling

 Metal based with chiral ligand

 First report: Cu(II)(NO3)2.3H2O with chiral amine ligands
(Wynberg and Feringa, Bioorganic Chemistry, 1978, 7, 397-408)

 R1=H, 1-8% ee; R1=ester, 6-16% ee

 Copper and 1,5, diazacis-decalin (Kozlowski, JOC, 2003, 68, 5500)

 R1=H, 4-18% ee; R1=ester, 56-94% ee

 Photochemical with chiral ruthenium salen catalyst (Katsuki,
Synlett 2000, 1433-1436)

 R2=H, 65% ee; R2=OMe, 33% ee, R2=methyl ester, 0% ee

 Vanadium catalyzed (Angew. Chem. Int. Ed. 2002, 41, 4532-4535)

 R1=H, 89% ee; R1=Br, 88% ee

 Electrochemical (Osa, J. Chem. Soc. Chem. Commun. 1994, 2535-2)

 R1=H, 99% ee
 Works with both free alcohol and methyl ether
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Redox Neutral Cross Coupling

 Enantioselective examples include:
 Kumada coupling (Hayashi, J. Am. Chem. Soc. 1988, 110, 8153-8156)

 Ni or Pd catalyzed with ferrocene derived ligand
 40-84 % yield and 16-83 % ee
 Coupled naphthalenes with Me or Et substituents

 Suzuki cross coupling (Buchwald,  J. Am. Chem. Soc. 2000, 122, 12051)

 40-87% yield and 71-95 % ee
 Conditions compatible with phosphonate and OMe

substituents

 Currently, no examples of asymmetric:
 Stille
 Negishi
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Buchwald Coupling Conditions

 3a  R=Et
 3b  R=Me
 4a  X=I
 4b  X=Br
 4c  X=Cl

X

NO2

Br

P

O

(OR)2

3

4
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Redox Neutral Cross Coupling (cont.)

 Advantages:
 Not restricted to specific substitution patterns
 Allow regioselective cross coupling of 2 different coupling

partners
 Generally, mild reaction conditions
 Source of chiral information can be used catalytically

 Disadvantages:
 No standard protocol (time consuming optimization)
 Long reaction times (sometimes up to 1 week)
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II. Modification of Pro-stereogenic Biaryls

 Generation of axially chirality through reaction with “pro-
chiral” biaryl unit
 Biaryl axis formed, chirality introduced later

 Two possible situations:
 Rotationally hindered but achiral
 Chiral, but configurationally unstable
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Desymmetrization of Biaryls

 First example of biaryl enzymatic desymmetrization
(Matsumoto, Synlett, 2002, 122)

 Carbonylation (Raston, J. Chem. Soc. Dalton Trans. 1988, 2403-2409)

Review: Chem. Rev. 2005, 105, 313 
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Desymmetrization in Cross Coupling

 Asymmetric Grignard cross coupling (Hayashi, J. Am. Chem. Soc. 1995,
117, 9101-9102)

 Other triflate still available to react (converted to phosphonate
(229) or ester)
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Desymmetrization through Bridge Formation
 Early work: 82 % overall yield (Harada, J. Org. Chem. 2000, 65, 1335)

 Improvement: (Org. Lett. 2000, 2, 1319)

 Using Cs2CO3, as the base, 8 could be obtained in 66% as a
single diastereomer and 9 in only 7%.
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Desymmetrization in Total Synthesis

 Total synthesis of anti-inflammatory A-240610.0,1 (Ku, J. Am. Chem.
Soc. 2002, 124, 4282)

 Single atropisomer was needed for efficient etherification
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Axial Chirality through Ring Cleavage

 Lactones (Bringmann, Acc. Chem. Res. 2001, 34, 615)

 The biaryl lactone is configurationally unstable
 Opening the lactone with chiral nucleophiles can selectively

provide the appropriate axial chirality
 CBS (Brigmann, Org. Synth. 2002, 79, 72-83)

 Sodium menthoxide (Bringmann, Chem. Eur. J. 1999, 5, 3029)

 Drawback: Biaryls posessing a β-keto and β-hydroxy functionality
readily racemize.  β –ketosulfoxides and chiral c-nucleophiles can
not be utilized
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Ortho Selective Reactions

 C-H activation
(Murai, Tetrahedron: Asymmetry
2000, 11, 2647)

 Starting material
freely rotates.
Alkylating the ortho
position results in
isolable atropisomers
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Ortho Selective Reactions

 N-oxide formation (Hayashi, J. Org. Chem. 2003, 68, 6329)

 The initially coupled product could be converted cleanly to the
other atropisomer through heating in toluene for 48 h

 N-oxide formation with MCPBA followed by chiral auxiliary
removal affords the stable atropisomers
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III. Second Aromatic Ring Generation

 Generation of chiral biaryls through formation of second
aromatic ring
 One of the newest methodologies to generate axial

chirality
 Chirality achieved through:

 Metal catalyzed cyclization (chiral ligand source of
chirality)

 Central to axial chirality transfer
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Chiral Pyridines

 [2+2+2] cyclization under photochemical conditions
(Gutnov and Heller, Angew. Chem. Int. Ed. 2004, 43, 3795)

 A series of chiral cobal catalysts were screened.  Catalyst 5
afforded the highest ee’s
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Chiral pyridines (cont.)

 Little temperature dependence (82% ee at 20 oC, 89% ee
at 3 oC)

 No observed solvent dependence
 When alkyne not tethered, yields were 2-33% and ee’s 32-

63% (compared to 74-80%)
 Proposed source of selectivity:
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Cyclization

 Iridium catalyzed [2+2+2] cyclization (Shibata, J. Am. Chem. Soc.,
2004, 126, 8382)

 74-97% yield and ee s in the 90’s
 This methodology could also be applied to biaryls (81% ee)
 Ether linkage was successfully replaced with:

 Alkene
 Methylene
 Nitrogen
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Cyclization (cont.)

 Cross Cyclotrimerization
(TanakaOrg. Lett, 2005, 7, 3119)

 61-89% yield,
84-96 % ee

 Br, Cl, Me, Et and
naphtyl varieties were
synthesized
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Chirality Exchange

 Chiral α-naphthalenes (Nishii and Tanabe, J. Am. Chem. Soc., 2004, 126, 5358)

 47-97% yield, >99% ee
 R1 = Cl, OMe, Me, R2 = H, Cl, Me
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Chirality Exchange (cont.)

 Binaphthalene synthesis (Hattori and Miyano Tetrahedron Lett. 2001, 42, 8035-
8038)
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Carbenes

 Chirality controlled by:
 Chiral bridges (Wulff, J. Am. Chem. Soc. 1996, 118, 2166-2181)

 Stereogenic centers in the ortho position (Wulff, J. Am. Chem. Soc. 2002,

124, 6512-6513) 47-73 %.  Either only II detected or 13:1 (II:1)
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Conclusion

 Axially chiral biaryls are an important structural element in
many natural products and can greatly influence biological
activity

 Axial chirality has been recognized for nearly 80 years, but
the synthetic tools are still in their infancy.  There are many
methods whose scope haven’t been fully explored

 The synthetic methods developed (classical, prostereogenic
modification and aromatic ring generation) have issues that need to
be overcome to permit wider application
 Substrate generality (formation of both bi-naphthalenes and

biaryls)
 Standardized reaction conditions (less time on optimization)
 Functional group tolerance
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