Targeting the Notch Pathway: Killing Cancer Stem Cells

Celeste Alverez Frontiers of Chemistry January 2, 2016

Celeste Alverez @ Wipf Group

1/2/2016

Outline

- Background
 - Cancer Stem Cells
 - The Notch Pathway
- Targeting agents
 - Drugs
 - Antibodies
- Challenges
- Future Directions
- Conclusions

Cancer Stem Cells

- Definition: Cells within a tumor that possess the capacity for *self-renewal*, *differentiation*, and *tumorigenesis* when implanted into an animal host
- First identified in 1994 in human acute myeloid leukemia (AML)
 - Cells were transplanted into severe combined-immune deficient (SCID) mice and tumors formed
- Found for first time in human solid tumors (breast, brain) in 2003

Cancer Stem Cells

- Possess characteristics of both stem cells and cancer cells
 - Undergo asymmetric cell division generating daughter cells where one retains stem-like properties and one progresses through cell division and differentiation
- Make up small a portion of the overall tumor
 - Up to 20% of cells in some solid tumors have been identified as possible CSCs
- Still some debate about origin of cancer, are CSCs real?
- More evidence mounting in favor of CSCs: including the heterogeneity that is characteristic of many tumor types

Stem Cell Rev. Rep. 2015, 11, 909-918

Cancer Stem Cells-Identification

- CSCs have been identified in various tumor types: AML, brain, breast, colon, liver, prostate, ovarian, pancreatic, bone, kidney, skin, and head and neck cancers
- Identified by markers that vary depending on the tumor type
 - Cell surface proteins
 - Cellular activity
- Not exact: not unique to CSCs (also in normal stem cells of the tissue)
- No single marker is known to easily identify CSCs

Tumor Type	Markers
Acute Myeloid Leukemia (AML)	CD34⁺CD38⁻
Brain Cancer	CD133+CD15+
Breast Cancer	CD44+CD24-/low CD133+ ALDH-1+
Liver Cancer	CD133 ⁺ CD90 ⁺ CD45 ⁻ CD44 ⁺ CD24 ⁺
Prostate Cancer	CD44 ⁺ α2B1integrin ^{high} CD133 ⁺
Pancreatic Cancer	CD44+CD24+ESA+

Cancer Stem Cells-Identification

- 1. Patient samples have cell subpopulations sorted by flow cytometry based on markers present or not present
- 2. Cells baring the desired markers are transplanted into immunocompromised mice
- 3. Allow tumors to grow (if CSCs present)
- OR
- 1. Patient samples are diluted down to low concentrations
- 2. Take aliquots and implant into immunocompromised mice
- 3. Allow tumors to grow (if CSCs present)

http://beweb.ucsd.edu/courses/senior-design/projects/2010/project_14/design-goals-alternatives.html

Cancer Stem Cells-Identification

8

1. Patient sample cells are sorted for desired markers

- 2. Plated at low density on a solid substrate
- 3. Allow colonies to grow (if progenitor or CSCs present)

OR

- 1. Patient sample cells are sorted for desired markers
- 2. Suspended in a semi-liquid medium at low density
- 3. Allow spheres to grow (if CSCs present)

Cancer Stem Cells- The Problem

9

- Chemo- and radio-resistance
 - Chemo: Post-treatment HER2⁺ breast cancer biopsy samples were enriched in CD44⁺CD24^{-/low} cells
 - Before: 4.7% vs after: 13.6%
 - Ability to form mammospheres before: 13.3% vs after: 53.5%
 - Radio: lower levels of ROS were detected in CSC enriched human breast cancer samples after radiation relative to non-CSC populations
 - Higher levels of expression of several ROS scavengers (superoxide dismutase 2, SOD2, methionine sulfoxide reductase A, MSRA) were found in CSC enriched samples
- Metastasis
 - CD44⁺ breast CSCs from primary tumors and secondary lung metastases resulted in metastasis when transplanted into immunocompromised mice
- Recurrence

Cancer stem cell survival and mutation

Mini-Rev. Med. Chem. 2014, 14, 20-34 J. Natl. Cancer Inst. 2008, 100, 672 - 679 Nature 2009, 458, 780-783 Proc. Natl. Acad. Sci. USA 2010, 107, 18115-18120

Therapy

Cancer Stem Cells- The Problem

Cancer Stem Cells- Targeting

- Due to slow growth/replication rate, many standard chemotherapeutics won't work
- CSCs are heavily reliant on pathways that control selfrenewal, embryonic development, and differentiation
 - Wnt
 - Hedgehog (HH)
 - Notch
 - Transforming Growth Factor B (TGF-B)
- Theoretically, inhibiting these pathways should target CSCs, selectively killing them
- Killing these "seed" cells should make tumors vulnerable to standard treatments

The Notch Pathway

- Originally discovered in *Drosophila melanogaster*
- Highly conserved embryonic developmental pathway
- Cell-to-cell contact is required for Notch signaling between cells
 - Ligands are presented on one cell and the receptor on the other
- 4 Notch receptors (Notch 1-4)
 - Single pass transmembrane cell surface receptors
 - Active receptors are heterodimers that originate from a single precursor which is cleaved then reconnected non-covalently
- 5 Notch ligands (Delta-like ligand [DLL] 1,3,4, Jagged [JAG] 1,2)
- Gene targets include HES and HEY transcriptional repressors, and NF- κB

The Notch Pathway

The Notch Pathway- Role in Cancer

Breast Cancer

- Notch signaling activity in breast cancer is common, up to 50% of cells have Notch activation
- Notch 1 activation resulted in accelerated tumor growth in vivo
- High JAG 1 and Notch 1 expression levels are correlated with poor patient survival
- Reduction in Notch 1 and 4 activity lead to reduction in amount of CD44⁺/CD24^{low} cells
 - Also reduced tumorigenicity after transplantation into immunocompromised mice

1/2/2016 Carcinogenesis **2013**, 34, 1420-1430

The Notch Pathway

15

- In most tissues, maintains an undifferentiated state
- In several tumor types, the expression level of Notch pathway components positively correlated with tumor grade
- Aids in CSC survival
- Plays a role in Epithelial-Mesenchymal Transition (EMT)
- Contributes to chemoresistance

Limited self

Carcinogenesis 2013, 34, 1420-1430

The Notch Pathway- Targets

16

Nature Reviews | Clinical Oncology Nat. Rev. Clin. Oncol. 2015, 12, 445-464

Targeting Agents- Merck

- MRK-003
 - The preclinical/nonhuman compound used to guide the development of another Merck GSI, MK-0752

- Originally tested against Alzheimer's disease for its ability to block AB40 accumulation
 - Subnanomolar activity against γ-secretase (0.24 nM)
 - in vivo efficacy against AB40 accumulation
- Orally bioavailable

Targeting Agents- MRK-003

- Kondratyev *et al*. treated primary tumor cells with either DMSO or MRK-003 for 4 days
- Injected cells from the spheres that formed into mice subcutaneously and allowed tumors to grow
- All animals were sacrificed when a tumor that was 10% of the weight of any occurred

Targeting Agents- MRK-003

- Tanaka *et al.* treated cells derived from GBM patient sample neurospheres with MRK-003
- MRK-003 induced apoptosis more vs DMSO control
- Lower left quad (red circle) = viable cells
- Upper right quad (purple circle) = apoptoic cells

Targeting Agents- MRK-003

- Tanaka *et al.* treated patient derived samples with DMSO or MRK-003 for 7 days
- MRK-003 resulted in significantly decreased tumorosphere formation relative to DMSO control
- Upper panel is from MRK "relatively sensitive" tumor
- Lower panel is from MRK "relatively resistant" tumor

Targeting Agents- Merck

• MK-0752

- Originally tested against Alzheimer's disease for its ability to block AB40 accumulation
 - $IC_{50} = 5 nM$
 - *in vivo* efficacy against AB40 accumulation
- Orally bioavailable
- Has been in 9 clinical trials mostly Phase I, but also Phase I/II
 - Either as a single agent or in combination

Targeting Agents- MK-0752

Celeste Alverez @ Wipf Group

Α.

Β.

Clin. Cancer Res. 2013, 19, 1512-1524

Targeting Agents- MK-0752

- Schott *et al*. transplanted patient derived metastatic breast cancer cells into immunocompromised mice
- Treated with either vehicle, MK-0752 (100 mg/ kg), docetaxel (10 mg/kg), or both
 - Clinically relevant dosing schedule shown
- Significant difference between MK-0752 treatment and vehicle
- Significant difference between docetaxel alone and combination treatments

Targeting Agents- Clinical Trials MK-0752

- 5 Completed clinical trials
 - For patients with advanced cancers
 - In combination with Gemcitabine, Ridaforolimus, or Docetaxel
 - Well tolerated in pediatric patients
- 3 Terminated clinical trials
 - Mainly due to toxicity and lack of efficacy
- 1 Active clinical trial for the treatment of early stage breast cancer in combination with Tamoxifen Or Letrozole

Targeting Agents- Clinical Trials Roche

• RO4929097

RO4929097

- Investigated in both Alzheimer's disease and cancer
 - γ -Secretase IC₅₀ = 4 nM
 - More selective inhibition for Notch cleavage over AB40
- Selective (>100 fold selectivity over 75 tested proteins)
- Orally bioavailable
- Has been in 35 clinical trials, both Phase I and Phase II
 - Either as a single agent or in combination
- No longer in development by Roche

Targeting Agents- RO4929097

- Huynh *et al.* treated aggressive melanoma cancers with either DMSO or RO4929097 (10µM)
- A. mRNA levels were determined for the downstream target gene of HES1 in treated and untreated cells
 - RO4929097 inhibits the Notch pathway in vitro
- B. Treatment with RO4929097 resulted in significantly reduced cellular proliferation

Targeting Agents- RO4929097

 Huynh *et al*. transplanted WM3248 melanoma cells into immunocompromised mice

- A. The expression levels of melanoma CSC markers were determined
- B. Primary tumor cells were collected from vehicle and RO4929097 treated mice and transplanted into new mice
 - Secondary tumors were untreated with additional compound

PLoS ONE 2011, 6, 1-10

Targeting Agents- Clinical Trials RO4929097

- Lee *et al.*, in a Phase II trial in metastatic melanomas, found that:
 - RO4929097 was well tolerated
 - 1 Partial response lasting 7 months
 - 8 patients had stable disease lasting at least through week 12
 - 1 continued for 31 months.
 - The 6-month progressionfree survival rate was 9%
 - The 1-year overall survival rate was 50%
 - Lack of inhibition of Notch target genes

29

Targeting Agents- Clinical Trials RO4929097

- Diaz-Padilla *et al.*, in platinum resistant ovarian cancers, found:
 - Also found RO4929097 to be well tolerated
 - 33% of patients reached stable disease (median duration = 3.1 months)
 - Median progression free survival (PFS) of study was 1.3 months (1.2-2.5)
 - Median PFS was higher when Notch intracellular domain detection was high (3.3 months vs 1.3 months for low NICD)

1/2/2016 Gynecol. Oncol. 2015, 137, 216-222

Targeting Agents- Clinical Trials RO4929097

- 15 Completed clinical trials
 - Typically for patients with advanced, metastatic, recurrent, or difficult to treat tumors
 - In various combinations including with other chemotherapeutic agents, radiotherapy, or surgery
- 13 Terminated clinical trials
 - Mainly due to too few subjects and discontinuation of RO4020097
- 4 Withdrawn clinical trials before recruitment occurred
- 3 Active clinical trials
 - For glioblastoma, breast cancer, and melanoma

1/2/2016

Targeting Agents- Clinical Trials Pfizer

• PF-03084014

- Originally tested against Alzheimer's disease for its ability to block AB40 accumulation
 - Good cellular activity against γ-secretase (1.2 nM)
 - *in vivo* efficacy against AB40 accumulation
- 13.3 nM activity against Notch cleavage
- Selective for γ-secretase
- Orally bioavailable

Targeting Agents- PF-03084014

- Wei *et al*. transplanted leukemia cells into immunocompromised mice
- A. PF-03084014 treatment (50 mg/ kg) resulted in significantly decreased levels of free NICD
- B. PF-03084014 treatment resulted in reduced tumor volume
 - 92% reduction with 150 mg/kg dosing

Targeting Agents- PF-03084014

- Yabuuchi *et al*. transplanted pancreatic cancer cells into immunocompromised mice
 - In their 7 patient samples the percent CSCs varied greatly: 0.64 16.6%
- Treated with gemcitabine (25 mg/kg) or PF-03084014 (150 mg/kg) or both
 - Gemcitabine alone increased amount of CD44⁺/CD24⁺ cells
 - PF-03084014 alone decreased amount by 3.7%
 - Combination decreased amount by 3%

Targeting Agents- Clinical Trials PF-03084014

- 3 Withdrawn clinical trials
- 4 Terminated clinical trials
 - All terminated June 24, 2015 due to "change in strategy of development"
 - "There were no safety/efficacy concerns"
- 1 Active clinical trial
 - Phase II
 - Single agent, for desmoid tumors

Clin. Cancer Res. 2015, 21, 60-67

Targeting Agents- Clinical Trials Bristol-Myers Squibb

35

• BMS-906024

- Selective
- IC₅₀ = 2-3 nM
- Cellular IC₅₀ (TALL-1) = 4 nM
- in vivo ED₅₀ < 0.5 mg/ kg in TALL-1

• BMS-986115

• Orally bioavailable

• Both in Phase 1 trials: Currently recruiting

> ACS Med. Chem. Lett., **2015**, *6*, 523-527 Nat. Rev. Clin. Oncol. **2015**, *12*, 445-464 ClinicalTrials.gov

- Need to improve metabolic stability, remove active metabolites, maintain potency
- 1 completed clinical trial data not disclosed

Celeste Alverez @ Wipf Group Porter, W. J., Discovery of a Novel Notch Inhibitor. Presented at the 8th SCI-RSC Symposium on Proteinase Inhibitor Design, Basel, Switzerland 2013

Targeting Agents- Clinical Trials Eli Lilly

• 2nd Generation compound

- IC₅₀ = 0.31 nM
- Solubility = 0.20 @ pH 2.0, 0.22 @ pH 6.0, 0.02 mg/mL @ pH 7.4

• Metabolism significantly reduced

- Major metabolism still by CYP3A4
- Major metabolite N-dealkylation more active than parent

Celeste Alverez @ Wipf Group

Porter, W. J., Discovery of a Novel Notch Inhibitor. Presented at the 8th SCI-RSC Symposium on Proteinase Inhibitor Design, Basel, Switzerland 2013

1/2/2016

Targeting Agents- Clinical Trials Eli Lilly

38

• IC₅₀ = 0.41 nM

IY3039478

- Solubility = 0.89 @ pH 2.0, 0.88 @ pH 6.0, 0.88 mg/mL @ pH 7.4
- Metabolism significantly reduced
- No active metabolism identified in metabolism screen
- Good to moderate clearance (species dependent)
- Bioavailability: mouse, rat, dog; 65-67%
- In Phase I clinical trial
 - No preclinical data disclosed

The Notch Pathway- Targets

Targeting Agents- Clinical Trials Anti-DLL4

• It has been shown that inhibition of DLL4 results in nonproductive angiogenesis

- Leading to hypoxia at tumor and decreased tumor growth
- DLL4 inhibition has also been shown to be antitumorigenic via mechanisms other than angiogenesis
 - in vitro blockage of DLL4 via mAb resulted in reduction of Notch signaling

1/2/2016 Cell Stem Cell 2009, 5, 168-177

Targeting Agents- Clinical Trials Anti-DLL4

- OMP-21M18
- Monoclonal antibody (mAb)
 - Selective for DLL4 over other Notch ligands
- Treatment of a colon tumor xenograph with OMP-21M18, irinotecan, or both resulted in reduced tumor volume compared to the control
- After stopping dosing tumors were allowed to continue growing (B)
 - Those treated with no OMP-21M18 continued to grow, OMP treated cells did not

Targeting Agents- Clinical Trials Anti-DLL4

- OMP-21M18
 - 1 Completed phase I clinical trial
 - 2 Active phase I clinical trials currently running
 - Single agent or in combination
 - For Non-small cell lung cancer and pancreatic cancers
 - 1 Currently recruiting clinical trial in combination with paclitaxel for the treatment of Pt resistant ovarian cancer

- MEDI0639
 - mAb, currently recruiting for phase I clinical trial for advanced solid tumors
- REGN421
 - mAb, completed phase I clinical trial for advanced solid tumors

The Notch Pathway- Targets

43

Nature Reviews | Clinical Oncology Nat. Rev. Clin. Oncol. 2015, 12, 445-464

Targeting Agents- Clinical Trials Anti-Notch

• There are currently 2 anti-Notch antibodies in clinical trial

- OMP-52M51
 - Binds Notch 1
 - Selective over other Notch receptors
 - 2 Phase I clinical trials currently recruiting
- OMP-59R5
 - Binds Notch 2/3
 - Tested preclinically in a variety of tumor types with good efficacy
 - Tested in combination with chemotherapeutics with good efficacy
 - 1 Active phase I clinical trial
 - 2 Phase Ib/II clinical trials currently recruiting

Targeting Agents

- Notch pathway inhibitors alone are at best moderately effective
- Because they will in theory only kill CSCs, it would be ideal to combine these compounds/antibodies with another chemotherapeutic agent which results in non-CSC cell death
- Combinations of GSI+chemotherapeutic as well as antibody+chemotherapeutic have been/are being tested to varying degrees of success
- GSI treatment also can lead to toxicity
 - It was found co-treatment with a glucocorticoid could reverse this toxicity and does not hinder efficacy

Potential Alternate Targets

Nature Reviews | Clinical Oncology Nat. Rev. Clin. Oncol. 2015, 12, 445-464

Current Challenges- Toxicity/ Efficacy

- Toxicity associated with Notch inhibition
 - One of the major reasons many GSIs do not make it past the preclinical/early clinical stages is due to dose limiting toxicity (DLT)
 - Most common DLT for GSIs is diarrhea and other gastrointestinal symptoms
 - Notch inhibition can cause differentiation of intestinal goblet cells and reduced absorption
 - Glucocorticoids can reverse this toxicity
- Efficacy at times looks poor in the clinic due to Notch targeting treatments being used in tumors with no CSCs, investigators need to screen

Current Challenges-Identification

- There is no universal CSC marker
 - Markers for each tumor type must be determined individually
 - Not all tumors of a given tissue express the same markers in different individuals
- There is no simple method of determining CSC content within a patient tumor
 - It can be unreliable to assess CSC presence via blood testing- not all markers are present in the blood
 - Identifying cell surface markers requires biopsies and then secondary typically indirect means to determine if CSCs are present
 - Or the assumption that the cell surface markers truly indicate CSCs
 - Assays to determine CSC presence tend to be based on secondary tumorigenicity
 - does not necessarily indicate CSCs, might be progenitor cells
- Difficult to assess any potential treatment without

What More Can Be Done?

- Alternative targets need to be explored:
- GSIs may not be the most efficient way to target CSCs
- Targeting protein-protein interactions should be considered
- Jagged 1 has also been implicated in CSC activationconsider it as a target
- Possibility for small molecule inhibition of Notch-ligand binding

Conclusion

50

- CSCs have been identified in various tumor types by phenotypic and molecular means
 - CSCs contribute to chemo- and radio-resistance, metastasis, and recurrence
 - Targeting embryonic pathways essential to the survival of CSCs should be a viable means of killing them
- The Notch pathway has been implicated in the survival of CSCs
- By targeting γ-secretase there has been some success preclinically and clinically in targeting and killing CSCs, especially as part of combination therapies
- Targeting Notch and Notch ligands has also been explored via mAb and several clinical trials are underway to determine safety and dosing
- Determining a straightforward mean of identifying CSCs may be the key to targeting Notch in CSCs and moving drugs beyond the clinic

Celeste Alverez @ Wipf Group

Acknowledgements

• Dr. Wipf

• Wipf group members past and present

Chemoresistance of CSCs

Effect of chemotherapy on the mean percentage of cells that express high levels of CD44 and low levels of CD24 (CD44+/CD24-/low) among HER2-negative patients. Percentage of tumorigenic cells increased at week 3 (P < .001) and remained high at surgery (week 12) (P < .001).

Effect of chemotherapy on **mean mammosphere (MS) forming efficiency** before, during, and after treatment. All patients, *P* < .001.

Radioresistance of CSCs

Human breast cancer from which CD44⁺CD24^{-/low}Lin⁻ cells (cancer stem cell enriched population, red) and "Not CD44₊CD24^{-/low}" Lin⁻ non-tumorigenic cells, green, were isolated using flow cytometry. Intracellular ROS concentrations were subsequently measured by DCF-DA staining for the two populations.

ROS levels were significantly lower in CSC enriched sample

1/2/2016

Nature 2009, 458, 780-783

CSCs and Metastasis

54

Representative H&E stains of sections from the breast tumor (BT), dissected lungs, and lymph nodes (LN) from a NOD/ SCID mouse transplanted with CD44⁺ human triple negative breast cancer tumor cells (Magnification: 200×)

Proc. Natl. Acad. Sci. USA 2010, 107, 18115-18120

Celeste Alverez @ Wipf Group

1/2/2016 Addapted from: Cancers 2011, 3, 716-729

Targeting Agents- Clinical Trials Merck

ClinicalTrials.gov Clin. Cancer Res. 2013, 19, 1512-1524 Brit. J. Cancer 2014, 111, 1932-1944

56

Celeste Alverez @ Wipf Group

Targeting Agents- Combinations

57

Celeste Alverez @ Wipf Group

1/2/2016 Mol. Cancer Ther. 2010, 9, 1618-1628