## Diversity-Oriented Synthesis of Tamoxifen-type Tetras ubstituted Olefins

Kenichiro Itami,\* Toshiyuki Kamei, and Jun-ichi Yoshida\*

J. AM. CHEM. SOC. 2003, 125, 14670-14671



Tamoxifen is the most important anti-breast cancer drug in clinical use and has the potenti al to be used as a chemopreventive breast cancer agent.



- Friedel-Crafts acylation, dehydration
- (trans/cis ratio of 1.3:l) seperable

Robertson, D. W.; Katzenellenbogen, J. A. J. Org. Chem. 1982, 47, 2387

Gil Ma @ Wipf Group



|   | R                    | R'             | X |
|---|----------------------|----------------|---|
| 1 | Н                    | O(CH2)2N(CH2)2 | Η |
| 2 | н                    | O(CH2)2N(CH3)2 | a |
| 1 | OH                   | O(CH2)2N(CH3)2 | н |
| 4 | CH                   | O(CH2)2N(CH3)2 | а |
| 5 | $O(CH_2)_2N(CH_3)_2$ | OH             | н |
| 6 | O(CH2)2N(CH3)2       | OH             | C |

- Gauthier, S; Mailhot, J.; Labrie, F.*J. Or g. Chem.* **1996,** *61,* 3890-3893
- Hydroxyl derivatives.
- McMurry coupling.
- $TiCl_4/Zn/9 = 4:8:3$
- 87% yield, <u>3</u>:5 (*Z:E* = 1:5.7).
- 9 or 10 gave *E* isomer as the major pr oduct.
- **12** (*E*/*Z* = 14:1), and **13** (*E*/*Z* = 22:1)
- In vivo,tamoxifen is transformed to hyd roxytamoxifen, which has a much high er binding affinity for the estrogen rece ptor and appears to be the compound responsible, in part, for the biological a ctions of tamoxifen.

Scheme 1<sup>a</sup>





<sup>9</sup>Reagents and conditions: (a) Cl(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>·HCl Cs<sub>2</sub>CO<sub>3</sub>, DMF, 80 °C, 16 h; (b) 9 or 10, TICl<sub>4</sub>, Zn, THF, nature, 5 h.



"Reagents and conditions: (a) PvCl, NeH, THF, 0 °C to n, 2 h; (b) 9 or 10, TiCl<sub>4</sub>, Zn, THF, reflux, 5 h; (c) Cl(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, K<sub>2</sub>CO<sub>3</sub>, asstone, H<sub>2</sub>O, reflux, 5 h; (d) MeU, THF, -78 °C, 2 h.

3

## metal-mediated synthetic methods for tamoxifen.



<sup>a</sup> (a) Et<sub>2</sub>AlCl, Cp<sub>2</sub>TiCl<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (b) NBS, -78 °C; (c) PhZnCl, Pd(PPh<sub>3</sub>)<sub>4</sub> (catalyst), THF, reflux; (d) Br<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, NaOMe/MeOH, -78 °C  $\rightarrow$  room temperature; (e) *p*-MeOC<sub>6</sub>H<sub>4</sub>ZnCl, Pd(PPh<sub>3</sub>)<sub>4</sub> (catalyst), THF, reflux; (f) NaSEt, DMF, reflux; (g) ClCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>·HCl, NaOEt, EtOH, reflux; (h) HCl(g), Et<sub>1</sub>O; (i) 0.5 N NaOH.



<sup>*a*</sup> (a)  $Et_2AlCl$ ,  $Cp_2TiCl_2$ ,  $CH_2Cl_2$ ; (b)  $I_2$ , -78 °C; (c) *p*-MeOC<sub>6</sub>H<sub>4</sub>ZnCl, Pd(PPh<sub>3</sub>)<sub>4</sub> (catalyst), fHF, reflux.

carbometalated with diethylaluminum ch loride-titanocene dichloride to give an or ganometallic intermediate

Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1985, 50, 2121-2123

12/22/03

A Nickel-Catalyzed Carbozincation of Aryl-Substituted Alkynes



Stiidemann, T.; Ibrahim-Ouali. M; Knochel, P. Tetrahedron, 1998, 54, 1299-1316

Gil Ma @ Wipf Group

12/22/03



<sup>a</sup> Bis(boryl)alkene (10 equiv), aryl halide (15 equiv), Pd(dppf)Cl<sub>2</sub> (0.5 equiv), 3,5-dimethoxyphenol (50 equiv), 6 M KOH (50 equiv), DME, 25 °C, 18 h. <sup>b</sup> 7 (1 equiv), 6 M KOH (100 equiv), 25 °C, 18 h. <sup>c</sup> For simplicity, only one of two possible regioisomers is shown.

Brown, S. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 7076-7077

1-Butynyldimethyl(2-pyridyl)silane (1).



directing effect of 2-pyridyl group



J. AM. CHEM. SOC. 2003, 125, 14670-14671

Gil Ma @ Wipf Group

12/22/03

table1. catalytic one-pot diarylation through the catalytic carbomagnesation/cross-coupling sequence. .

| Ν                              | 1) Ar <sup>1</sup><br>Cul                  | MgI (1.5 equiv)<br>(30%), Et <sub>2</sub> O, 0 °C                                          | Ar <sup>2</sup> | N                    |
|--------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|----------------------|
| Si<br>Me <sub>2</sub><br>) equ | 2) Ar <sup>2</sup><br>2 Pd[<br>iv) TH      | l (1.5 equiv)<br>P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (5%)<br><sup>=</sup> , 40 °C | Et 3            | e <sub>2</sub>       |
| run                            | Ar1                                        | Αr²                                                                                        | 3               | yield ( <i>E\Z</i> ) |
| 1                              | C <sub>6</sub> H <sub>5</sub> ( <b>a</b> ) | C <sub>6</sub> H <sub>5</sub> ( <b>a</b> )                                                 | 3aa             | 80% (92/8)           |
| 2                              | $C_6H_5(\mathbf{a})$                       | 4-MeOC <sub>6</sub> H <sub>4</sub> (b)                                                     | 3ab             | 60% (92/8)           |
| 3                              | $C_6H_5(\mathbf{a})$                       | $4-Me_2N(CH_2)_2OC_6H_4(c)$                                                                | 3ac             | 55% (88/12)          |
| 4                              | $C_6H_5(\mathbf{a})$                       | 4-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ( <b>d</b> )                               | 3ad             | 75% (95/5)           |
| 5                              | $C_6H_5(\mathbf{a})$                       | $4-\text{EtOCOC}_6\text{H}_4$ (e)                                                          | 3ae             | 58% (94/6)           |
| 6                              | $C_6H_5(\mathbf{a})$                       | $4-ClC_6H_4(\mathbf{f})$                                                                   | 3af             | 69% (94/6)           |
| 7                              | $3-ClC_6H_4$ (g)                           | $4-Me_2N(CH_2)_2OC_6H_4(c)$                                                                | 3gc             | 55% (92/8)           |
| 8                              | $3-ClC_6H_4(\mathbf{g})$                   | $4-\text{MeC}_6\text{H}_4(\mathbf{h})$                                                     | 3gh             | 79% (92/8)           |
|                                |                                            |                                                                                            |                 |                      |

• The two aryl groups (Ar 1 and Ar 2) are introduced in a cis fashion, which is in accordan ce with syn carbometalation and retention of stereochemistry during the sub-sequent cro ss-coupling.

1



| run   | <b>3</b> (E/Z)    | 4          | yield ( <i>Z/E</i> ) |
|-------|-------------------|------------|----------------------|
| 1     | <b>3aa</b> (94/6) | <b>4aa</b> | 82% (98/2)           |
| $2^a$ | 3ac (88/12)       | 4ac        | 65% (94/6)           |
| 3     | <b>3ad</b> (95/5) | 4ad        | 80% (99/1)           |
| 4     | 3ae (94/6)        | 4ae        | 64% (>99/1)          |
| $5^a$ | 3gc (92/8)        | 4gc        | 77% (95/5)           |
| 6     | <b>3gh</b> (92/8) | 4gh        | 73% (97/3)           |

- the cross-coupling of **3** at the C-Si bond (Hiyama cross-coupling) was no s uccess. (steric)
- Borodesilylation.

Diversity-Oriented Synthesis of Multisubstituted Olefins

J. Am. Chem. Soc., Vol. 123, No. 47, 2001 11585

## Scheme 5

Diarylethenes





| Ar <sup>2</sup><br>B(pin)<br>Et<br>4 |                   | + <b>Ar<sup>3</sup>—I -</b><br>(1.2 equiv)     | Pd[P( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> (5%)<br>NaOH/H <sub>2</sub> O (3.0 equiv)<br>THF<br>60 °C, 24 h |                       | Ar |
|--------------------------------------|-------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|----|
| run                                  | <b>4</b> (Z E)    | Ar <sup>3</sup>                                | 5                                                                                                               | yield ( <i>El Z</i> ) |    |
| 1                                    | 4aa (97/3)        | 4-Me2N(CH2)2OC6H                               | 4 (c) 5aac                                                                                                      | 95% (99/1)            | а  |
| 2                                    | <b>4aa</b> (97/3) | $4-\text{MeC}_6\text{H}_4(\mathbf{h})$         | 5aah                                                                                                            | 96% (99/1)            | ly |
| 3                                    | 4ac (94/6)        | C6H5 (a)                                       | 5aca                                                                                                            | 98% (5/95)            | et |
| 4                                    | 4ac (94/6)        | 4-MeOC <sub>6</sub> H <sub>4</sub> (b)         | 5acb                                                                                                            | 95% (5/95)            | re |
| 5                                    | 4ac (94/6)        | 3-MeOC <sub>6</sub> H <sub>4</sub> (i)         | 5aci                                                                                                            | 92% (95/5)            | rc |
| 6                                    | 4ad (99/1)        | 4-MeOC <sub>6</sub> H <sub>4</sub> (b)         | 5adb                                                                                                            | 97% (>99/1)           | 4  |
| 7                                    | 4ad (99/1)        | 4-ClC <sub>6</sub> H <sub>4</sub> (f)          | 5adf                                                                                                            | 90% (> 99/1)          | u  |
| 8                                    | 4ad (99/1)        | 2-MeOC <sub>6</sub> H <sub>4</sub> (j)         | 5adj                                                                                                            | 95% (>99/1)           |    |
| 9                                    | 4ad (99/1)        | 3-pyridyl (k)                                  | 5adk                                                                                                            | 67% (>99/1)           | SC |
| 10                                   | 4gc (95/5)        | 4-MeOC <sub>6</sub> H <sub>4</sub> (b)         | 5geb                                                                                                            | 80% (4/96)            | xr |
| 11                                   | 4gc (95/5)        | 3-MeC <sub>6</sub> H <sub>4</sub> (1)          | 5gel                                                                                                            | 82% (98/2)            | n  |
| 12                                   | 4gc (97/3)        | 3-thienyl (m)                                  | 5gem                                                                                                            | 87% (99/1)            | h  |
| 13                                   | 4gh (97/3)        | 2-MeC <sub>6</sub> H <sub>4</sub> ( <b>n</b> ) | 5ghn                                                                                                            | 93% (>99/1)           | D  |
| 14                                   | 4gh (99/1)        | $3,5-F_2C_6H_3(0)$                             | 5gho                                                                                                            | 98% (>99/1)           |    |
| 15                                   | 4gh (99/1)        | 1-naphthyl (p)                                 | 5ghp                                                                                                            | 99% (>99/1)           |    |

a wide array of electronical ly and structurally diverse t etrasubstituted olefins in a regiocontrolled, stereocont rolled, and diversity-oriente d manner.

Et

5

scheme should be easily e xpanded to the constructio n of a more general tetrasu bstituted olefin structure.

• Suzuki-Miyaura Coupling

-