Chemoselective Amide Ligations by Decarboxylative Condensations of *N***-Alkylhydroxylamines and** α**-Ketoacids**

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Zhiyong Wang Wipf Group Current Literature Presentation March 4th, 2006

Introduction: Ligation Reactions

An ideal ligation process:

Chemoselective covalent bond formation between two fragments

containing unprotected functional groups

Mild (often aqueous) conditions

Low molar concentrations of reactants

No need for reagents or catalysts

No production of chemical by-products

Ligation of Azides and Terminal Alkynes

Sharpless, K. B. et al. *Angew. Chem. Int. Ed.* **2002**, *41*, 2596-2599.

Reaction Scope

* All reactions were carried out in water with tert-butyl alcohol as cosolvent, 0.25 ± 0.5 in reactants, with 1 mol% of CuSO₄ and 10 mol% of sodium ascorbate, and were complete in 12 ± 24 h.

Sharpless, K. B. et al. *Angew. Chem. Int. Ed.* **2002**, *41*, 2596-2599.

Zhiyong Wang @ Wipf Group 3/11/2006

Application in Medicinal Chemistry

Acetylcholinesterase (AChE): key enzyme in neurotransmitter hydrolysis and target for Alzheimer's dementia

Sharpless, K. B. et al. *Angew. Chem. Int. Ed.* **2002**, *41*, 1053-1057.

Inhibitor	k_{on} $[10^{10}$ M ⁻¹ min ⁻¹]	k_{off} $\lceil \text{min}^{-1} \rceil$	K_d	AChE source
syn-1	1.5	0.0015	99 fm	E. electricus
	1.3	0.0011	77 fm	T. californica
	1.3	0.0079	410 fm	mouse
anti-1	1.8	0.25	14000 fm	E. electricus
	3.2	0.026	720 fm	T. californica
	2.4	0.30	8900 fm	mouse
tacrine ^[38]	0.78	138	18nM	mouse
propidium ^[38]	1.4	15000	1100 n M	mouse
huprine X ^[55]	0.044	0.009	26 рм	human
ambenonium[35]	0.31	0.78	250 рм	human

A Comparison of the Inhibitory Activities

Sharpless, K. B. et al. *Angew. Chem. Int. Ed.* **2002**, *41*, 1053-1057.

Other Common Ligation Techniques

Rademann, J. *Angew. Chem. Int. Ed.* **2004**, *43*, 4554-4556.

Current Paper: Chemoselective Amide Ligation

Reaction Discovery

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Reaction Optimization

Table 1: Reaction conditions for amide formation from hydroxylamine 1 and α -ketoacid 2.

[a] All reaction performed on a 0.2 mmol scale; [b] Yields following chromatography; [c] HPLC yields of unpurified reaction mixtures given in parentheses.

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

A Racemization/Epimerization-Free Process

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Zhiyong Wang @ Wipf Group 3/11/2006

Reaction Scope

Table 2: Ketoacid-hydroxylamine peptide ligations of selected protected- and unprotected-peptide substrates.

[a] All reaction performed at 0.02-0.1 m in DMF or DMSO containing ca. 5% H₂O at 40°C for 10-24 h using 1 equiv ketoacid and 1.2-2 equiv hydroxylamine oxalates; [b] Yields of pure products following preparative TLC or RP-HPLC. The reported yields include the preparation of the ketoacids by oxidation of the appropriate cyanoylide followed by coupling with the hydroxylamine; [c] 0.01 m, 48 h.

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Reaction Mechanism

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Reaction with Substituted Hydroxylamine

Bode, J. M.; Fox, R. M.; Baucom, K. D. *Angew. Chem. Int. Ed.* **2006**, *45*, 1248-1252.

Synthesis of the α -Ketoacids

Table 1. Synthesis of a-Keto Acids, Esters, and Amides from Carboxylic Acids

	$R - CO2H$ 12	CN. PPh ₃	EDCI, DMAP $CH2Cl2$, rt	.CN O ₃ , -78° C я PPh ₃ solvent/NuH 13	Nυ Е 14	
		ketocyano ylide			α -keto acid, esters, and amides ^a	
entry	$_{\rm RCO_2H}$ 12	13	yield (%)	solvent/NuH	14	yield (%)
	$Cbz-HN-(CH2)11-CO2H (12a)$	13а	78	$(7:3) CH2Cl2 - MeOH$	$14a$ (Nu = OMe)	83
	$HO-CH2)11-CO2H(12b)$	13Ь	ь	$(7:3)$ CH_2Cl_2-MeOH	$14b$ (Nu = OMe)	85
	Boc-Phe-OH (12c)	13c	80	$CH_2Cl_2/(4/1)$ THF-H ₂ O ^c	14c (Nu = OH) ^d	74
	Boc-Phe-OH (12c)	13c	80	$(7:3)$ CH_2Cl_2-MeOH	14d $(Nu = OMe)$	89
	$Cbz-Gly-Gly-OH (12e)$	13e	59	$(7:3)$ $CH2Cl2–MeOH$	14e ($Nu = OMe$)	74
	Cbz-Ala-Gly-Gly-OH (12f)	13f	64	$(7:3)$ $CH2Cl2 - MeOH$	$14f(Nu = OMe)$	88
	Boc-Phe-OH (12c)	13c	80	$CH_2Cl_2/Phe-OEt^{c,e}$	$14g$ (Nu = Phe-OEt)	63
	$Boc-Phe-OH(12c)$	13c	80	CH ₂ Cl ₂ /Leu-OMe ^c //Pr ₂ NEt	$14h$ (Nu = Leu-OMe)	58

Wasserman, H. H.; Ho, W. B. *J. Org. Chem.* **1994**, *59*, 4364-4366.

Synthesis of Hydroxylamine

^aConditions A. ClCH₂CN (1.5 eq), K₂CO₃ (2.0 eq), CH₃CN, 60°C; Conditions B. BrCH₂CN (1.5 eq), i-Pr₂NEt (2.0 eq), CH₃CN, rt; Conditions C. ICH₂CN (2.0 eq), K_2CO_3 (2.5 eq), DMF, rt. ^bHCl salt of amine was used. ${}^{\text{c}}\text{BrCH}_2CN$ (1.3 eq), i-Pr₂NEt (3.0 eq). ${}^{d}BrCH_2CN$ (1.2 eq), i-Pr₂NEt (2.0 eq). eBrCH₂CN (2.0 eq), i-Pr₂NEt (3.0 eq).

Tokuyama, H.; Kuboyama, T.; Fukuyama, T. *Org. Syn*. **2003**, *80*, 207 – 218.

Summary

- \triangleright A powerful and chemoselective amide bond formation reaction that proceeds in the presences of reactive functional groups is developed.
- No reagents or catalysts are needed.
- \triangleright Water and CO₂ are the only by-products.
- Unprotected amino acids or peptides can be coupled directly.
- \triangleright Preparation of the reactive α -ketoacids is the major draw-back.