Rubén Martin, Alois Fürstner, "Cross-Coupling of Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex,"

Angew. Chem. Int. Ed. 2004, 43, 3955-3957.

Tyler E. Benedum Current Literature October 16, 2004

Topics

Ø Background

So Early examples of aliphatic halide cross-coupling
 So Kochi's work with iron catalyzed cross-coupling
 So Recent low valent iron-catalyzed cross-coupling

- E. Nakamura
- T. Hayashi
- A. Fürstner

Summary

Background

Numerous examples of palladium- and nickelcatalyzed cross-coupling reactions with aryl and vinyl halides in the literature

- Alkyl halides have recently been included in the scope of this methodology
 - Predominance of literature *post-*2000
- So First reported transition metal complex reacting with sp³ carbon-iodide bond in 1967

(Corey, E.J.; Semmelhack, M.F. *J. Am. Chem. Soc.* **1967**, *8*9, 2755-2757.)

Kumada-Corriu Reaction

§ 1986 - First cross-coupling reaction employing Pd(0) and using simple aliphatic iodides with a variety of Grignard reagents

(Castle, P.L.; Widdowson, D.A. Tetrahedron Lett. 1986, 27, 6013-6016.)

However, disproportionation also occurs under these conditions

(Yuan, K.; Scott, W.J. *Tetrahedron Lett.* **1989**, *30*, 4779-4782; *J. Org. Chem.* **1990**, *55*, 6188-6194; *Tetrahedron Lett.* **1991**, *32*, 189-192.)

Yuan conducted more detailed study with neopentyl substrates

Tyler Benedum @ Wipf Group

10/18/2004

Suzuki Reaction

℘ Functional group tolerance

Esters, ketals, cyano

(Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. *Chem. Lett.* **1992**, 691-694.)

Approach extended to iodocycloproanes and their coupling to boronic acids and esters

Stille Reaction

Successful coupling of alkyl halides with various organostannanes

 $R^{1}I \xrightarrow{R^{2}-SnBu_{3}} R^{1}R^{2}$ $ML_n = (PPh_3)_2 NiCl_2$, $(PPh_3)_2 PdCl_2$, or $(PPh_3)_4 Pd$ R^2 ; (% yield) R^1 C₈F₁₇(CH₂)₂ allyl; (57) (*E*)-PhCH=CH; (83) Ph; (68) $CF_3(CH_2)_2$ $PhC\equiv C; (61)$ $C_6F_{13}(CH_2)_2$ $PhC\equiv C; (79)$ $C_3F_7CH_2CHBu$ $PhC\equiv C; (41)$ C₄F₀ (*E*)-PhCH=CH; (70) $CH_2=CH(HOCH_2)CH;$ (52) $CF_{3}CH_{2}$ CF_{3} (*E*)-PhCH=CH; (38) allyl; (24) $C_{6}F_{13}$ $C_6H_{13}C \equiv C; (55)$

a) Shimizu, R.;Fuchikami, T. *Tetrahedron Lett.* **1996**, 37, 8405-8408. b) Matsubara, S.; Mitani, M.; Utimoto, K. *Tetrahedron Lett.* **1987**, 28, 5857-5860. Tyler Benedum @ Wipf Group 6 10/18/2004

Kochi's Early Work with Iron

- Selectron transfer mechanisms for organometallic intermediates in catalytic reactions
 - Specifically, studied the reduction of ferrous and ferric chloride
- Applied his findings to metal-catalyzed alkyl transfer reactions of Grignard reagents
 - Known generally as the Kharasch (Kumada) reaction

Kochi, et al. and the Kharasch Reaction

 Reaction between organometals and alkyl halides using catalytic transition metal complexes

$$R-MgX + R'-X \xrightarrow{MX_n} a R_2 + R'_2 + RR' + MgX_2$$

b R'H+RH+R(-H)+R'(-H)+MgX_2

a. Coupling; b. Disproportionation

- Silver (I) and copper (I) are effective catalysts for pathway a
- Iron, however, causes the reaction to proceed via pathway b
 - Except with aryl and vinyl halides and substrates lacking β-hydrogens (methyl, neopentyl, and benzyl)

Mechanistic Viewpoint

Kochi proposes:

 $Fe^{I} + RBr \longrightarrow Fe^{II}Br + R$

 $R \cdot + Fe^{I} \longrightarrow RFe^{II}$

 $R'MgBr + Fe^{II}Br \longrightarrow R'Fe^{II} + MgBr_2$

 $RFe^{II} + R'Fe^{II} \longrightarrow [RH, R'H, R(-H), R'(-H)] + 2Fe^{I}$

 The unstability of the alkyliron intermediate, compared to other alkylmetal intermediates, possibly results in disproportionation versus coupling

Iron intermediate suffers from fast β-hydride elimination

A Low Valent Iron?

New, Generally "Accepted" Catalytic Cycle

"...speculated that highly reduced iron-magnesium clusters of the formal composition [Fe(MgX)₂]_n generated *in situ* may play a decisive role in the catalytic cycle." (Martin,R.; Fürstner, A. Angew. Chem. Int. Ed. 2004, 43, 3955-3957.)

E. Nakamura's Research

Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686-3687.

20

15

71

DABCO

NMP

TMEDA

2

3

19

0

trace

3

75

79

trace

10

6

E. Nakamura's Research

Alkyl-X	ArMgBr (1. TMEDA (1 TMEDA (1 THF 0 °C (30)	.2 eq) .2 eq) → Product min)	
Alkyl halide	ArMgBr, Ar =	Product	% yield
Br	Ph-	Ph	96
⊖ ^x	Ph-	×	99 (X = I) 99 (X = Br) 99 (X = CI)*
Br	$\begin{array}{l} 4\text{-}\text{MeOC}_6\text{H}_4\text{-}\\ 4\text{-}\text{MeC}_6\text{H}_4\text{-}\\ 4\text{-}\text{CF}_3\text{C}_6\text{H}_4\text{-}\\ 2\text{-}\text{naphthyl-}\\ 1\text{-}\text{naphthyl-}\\ 2\text{-}\text{MeC}_6\text{H}_4\text{-} \end{array}$	Ar	99 96 67 96 97 98
×	Ph-	Ph	95 (X = I) 94 (X = Br) 84 (X = CI)*
<i>n</i> -C ₈ H ₁₇ —X	Ph-	<i>n</i> -C ₈ H ₁₇ −Ph	97 (X = I) 91 (X = Br) 45 (X = CI)*

*Reaction temperature was 40 °C.

Tyler Benedum @ Wipf Group

E. Nakamura's Research

- Methodology allows for variety of functional groups
 - Alkoxycarbonyl
 - Alkenyl
 - Alkynyl
 - N-indolyl

Tyler Benedum @ Wipf Group

Hayashi's Studies

Nagano, T.; Hayashi, T. "Iron-Catalyzed Grignard Cross-Coupling with Alkyl Halides Possessing β -Hydrogens," *Org. Lett.* **2004**, *6*, 1297-1299.

*Reaction was carried out in refluxing diethyl ether.

ø Initial studies

Low-valent catalyst described by Jonas

(Jonas, K.; Schieferstein, C.; Krüger, C.; Tsay, Y.-H. Angew. Chem. Int. Ed. 1979, 18, 549-550.)

℘ Scope

- Alkyl halides with aryl Grignard reagents and phenyllithium
- Primary alkyl iodides
- Secondary alkyl bromides
- Propargyl and allyl halides

Limitations

- Tertiary halides
- Alkyl chlorides

Tyler Benedum @ Wipf Group

17

- Activation of the alkyl halide significantly faster than the attack of Grignard reagent to functional groups
 - Ketones
 - Esters
 - Enoates
 - Chlorides
 - Nitriles
 - Isocyanates
 - Ethers
 - Acetals

 $[Li(tmeda)]_2[Fe(C_2H_4)_4]$ R^1 PhMgBr R^2 `Ph THF. -20 °C. <10 min Yield (%) Substrate Product 91 Ph 88 OEt Ph OEt CN CN 83 Ph 90 ∠NCO Ph. _NCO Ph 86 87 \cap `OBn `OBn 95 Ph 87 OEt OEt

Tyler Benedum @ Wipf Group

10/18/2004

 First effective example
 of iron-catalyzed cross-coupling of allylic halides

[Li(tmeda)]₂[Fe(C₂H₄)₄] PhMgBr, THF

(85%)

(77%)

Ph

Highlights of Iron-Catalysis

So Low Cost

Readily-available

℘ Practical and "Green"

℘ Scalability

- Little optimization required
- No requirements for special ligands
- Relatively unreactive 2° bromides and chlorides undergo coupling
- Ø High reaction rates (rxns proceed within 20 min)
 Ø Mild conditions (-20 °C to 40 °C)

Summary

© Conclusion

- Ability to couple various aryl Grignard reagents with a variety of alkyl halides in high yields
- Extension of sp³ coupling methodology
- Further insight into the mechanism of iron-catalyzed couplings
- - Apply methodology to sp³-sp³ coupling reactions
 - Continue to elucidate the reaction mechanism