David A. Nicewicz, Christopher M. Yates, and Jeffrey S. Johnson

Angew. Chem. Int. Ed. 2002, 43, 2652-2655.

Some Common Methods for Hydrocyanation and Cyanation of Carbonyl Compounds

$$R^{1} \stackrel{Q}{\longrightarrow} R^{2}$$

$$R^{2} \stackrel{KCN}{\longrightarrow} R^{2}$$

$$[R = H] \qquad [R = H]$$

$$[R = H] \qquad [R = H]$$

$$[R = H] \qquad [R = H]$$

For a review on Cyanohydrins see: Gregory, R. J. H. Chem. Rev. 1999, 99, 3649.

Formation of Protected Cyanohydrins via Brook Rearrangement of Acylsilanes

degl'Innocenti, A.; Ricci, A.; Mordini, A.; Reginato, G.; Colotta, V. Gazz. Chem. Ital. 1987, 117, 645.

For a recent review on the Brook rearrangement: Moser, W. H. Tetrahedron 2001, 57, 2065.

Formation of Protected Cyanohydrins via Brook Rearrangement of Acylsilanes

cyanohydrin isolation and interception of reactive intermediates

	yield (%)				
1 R	n-Bu ₄ NBr	n-Bu ₄ PBr			
a Me	75	82			
b <i>i</i> -Pr	56	93			
c c-C ₃ H ₅	85	95			
d c -C ₆ H ₁₁	64	96			
e t-Bu	85	95			

$$\begin{array}{c|c} O & KCN \ (1.1eq) \\ PTC \ (20 \ mol\%) & OSiMe_2Bu^{1} \\ \hline SiMe_2Bu^{1} & CH_2Cl_2-H_2O & R & CN \\ \hline & (1:1) & 6 \end{array}$$

		yield (%)				
5	R	n-Bu₄NBr	n-Bu ₄ PBr			
a	Ph	68	95			
b	Me	65	74			
c (CH ₂ CH ₂ OM	e 65	76			

First Enantioselective Synthesis of Tertiary Cyanohydrins

pseudoephedrine based chiral phosphate auxiliary

Scheme 3. Transformation of racemic aldehyde cyanohydrin 3 into optically active ketone cyanohydrins 6 with recycling of the ephedrine auxiliary 1.

First Enantioselective Synthesis of Tertiary Cyanohydrins

											•
R	x	5	Yield (%)	de (%)	6	Yield (%)	ee (%) [a]	H		CR-X	1
allyl	Вг	я	47	90	2	79		Ph O Ph	h BuLi	Ph O Ph	R-X
methyl	I	b	69	83	b	66	>96	C O N Me		C O N Me	
n-propyl	I	c	58	82	c	92		N CH3	,	N CH3]
propargyl	Br	d	65	82	d	72		•	i	<u> </u>	}
benzyl	Br	e	58	82	е	85	> 96				
3-phenylpropyl	I	ſ	54	80	f	44		4d		4d- Li+	_
(—)-myrtenyl	Вr	g	49	48	g	58					Ph. i O
n-octyl	1	h	48	81							Ph O P
3,3-dimethylallyl	Br	i	40	94							င့် တိ
2-bromoallyl	Br	k	38	71							N C
cinnamyl	Br	1	45	90							,4

First Enantioselective Synthesis of Tertiary Cyanohydrins

			Br OMe	4d- Li+	ĊN O Ne	O Ph Me
Product	Yield (%)	dr (%) [a]			"o	
13 14	52 53	91:9 83:17	() ₋ \(\)	4d- Li+	(()	Ph
	13	13 52 14 53	13 52 91;9 14 53 83:17	Product Yield (%) dr (%) [a] 13 52 91:9 14 53 83:17	Product Yield (%) dr (%) [a] 13 52 91:9 14 53 83:17	Product Yield (%) dr (%) [a] 13 52 91:9 14 53 83:17

72:23:4: <1 [b] 80:13:5:<2 [b]

65:22:9: <4 [b]

55:27:12: < 6 [c]

61

55

48

69

15 b

16 a

16b

17

Schrader, T. Chem. Eur. J. 1997, 3, 1273.

n = 1.2

2-cyclohexenone

ethyi crotonate

methyl cinnamate

methyl 4-bromocrotonate

[[]a] dr = diastereomeric ratio. [b] Only three diastereomers could be detected; we assume an (R) configuration at C, for both major diastereomers. [c] No other diastereomers could be detected.

Synthetic Approaches to α -Cyano- α -hydroxy Esters

Achmatowicz, O.; Szymoniak, J. *Tetrahedron* **1982**, *38*, 1299.

Catalyzed Cyanation/Brook Rearrangement/C-Acylation Sequence

Table 1. Catalyst Evaluation for Cyanation/Brook Rearrangement/C-Acylation Reactions of Acylsilanes (Eq. I)"

entry	catalyst	time (h)	yield (%) ^b
1	KCN	36	29 ^c
2	KCN/18-crown-6	4-5	86
3	KCN/Bu ₄ NBr	15	83
4	KCN/Bu₄PBr	15	74
5	quinuclidine	36	69^d
6	none	36	0

[&]quot;PhC(O)SiEt₃ (1.0 equiv). NCCO₂Et (1.1 equiv). ^h Isolated yield of analytically pure material. ^c Percent conversion based on ¹H NMR spectroscopy of the unpurified reaction mixture. ^d Catalyst concentration = 20 mol %. C_7H_8 , 25 °C.

Catalyzed Cyanation/Brook Rearrangement/C-Acylation Sequence

	Î	+ OEI	NC NC	CO₂EI	(2)	
entry	acylsitane	NC OEL 18-Crown-6 (5 m	ol%) R solvent	OSiEt ₃ temp ("C)	time (h)	yield ^b (%)
1	SiEt ₃	NC CO ₂ Et OSiEt ₃	Et ₂ O	25	2	81
2	SiEt ₃	NC CO ₂ Et OSiEt ₃	Et₂O	25	1	74
3	SiEl ₃	NC CO ₂ Et OSiEt ₃	Et ₂ O	. 25	12	62°
4	SiEl ₃	NC CO ₂ EI OSiEI ₃	C ₇ H ₈	110	3	85 ^d
5	Me ₂ N SiEl ₃	NC CO ₂ Et OSiEt ₃	C_7H_8	110	24	97
6	Me SiEl ₃	Me NC CO ₂ Et	Et ₂ O	25	1.5	73°
7	Me SiEt ₃	Me CO ₂ Et OSiEt ₃	Et ₂ O	25	1.5	61°

Linghu, X.; Nicewicz, D. A.; Johnson, J. S. Org. Lett. 2002, 4, 2957.

Catalyzed Cyanation/Brook Rearrangement/C-Acylation Sequence

Table 3. Variation of Silane and Ester Substituents in Catalyzed Cyanation/Brook Rearrangement/C-Acylation Reactions (Eq 3)"

entry	acylsilanc	(R`)	product	time (h)	yield (%) ^b
1	SiMe ₂ ¹Bu	Et	NC CO ₂ E1 OSi ¹ BuMe ₂	2	92
2	SiMe ₂ ¹Bu	Bn	NC CO ₂ Bn OSi ¹ BuMe ₂	2	87
3	SiMe ₂ ¹Bu	¹Bu	NC CO ₂ ^l Bu OSi ^l BuMe ₂	ł	87
4	SiEt ₃	Et	NC CO ₂ Et OSiEt ₃	2	81
5	SiEt ₃	Bn	NC CO ₂ Bn OSiEt ₃	2	80
6	SiEt ₃	¹Bu	NC CO ₂ ^I Bu OSiEt ₃	12	72

"PhC(O)SiR₃ (1.0 equiv), NCCO₂R' (1.1 equiv). h Isolated yield of analytically pure material; average of at least two experiments.

$$\begin{array}{c}
OH + RO \\
OH + RO \\
OH + RO
\end{array}$$

$$\begin{array}{c}
O \\
-2 ROH
\end{array}$$

$$\begin{array}{c}
O \\
M(OR)_n \\
O \\
M(OR)_n
\end{array}$$

$$\begin{array}{c}
Me_3SiCN \\
(n \text{ equiv}) \\
-Me_3SiOR \\
(n \text{ equiv})
\end{array}$$

$$\begin{array}{c}
O \\
M(CN)_n
\end{array}$$

Table 1: Optimization of catalyzed reactions of acylsilanes and cyanoformate esters [Eq. (2)]. [1]

Entry	X in 7-X	$c_0(PhC(O)SiEt_3)$ [M]	ee ^[b] [%]	Conv. [%] ^[t]
1	CMe ₃	2.5	26	> 95
2	CMe,	1.5	34	> 95
3	CMe,	0.5	46	80
4	NO ₂	2.5	44	> 95
5	NO ₂	1.5	54	90
6	NO ₂	0.5	54	30
7	Cl	2.5	56	> 95
8	Cl	1.5	62	> 95
9	Cl	0.5	67	> 95
10	Cl	0.05	79	> 95
11	OMe	0.05	70	> 95
12	NMe ₂	. 0.05	46	> 95

[a] PhC(O)SiEt₃ (1.0 equiv), BnO₂CCN (2.0 equiv). [b] Determined by CSP-SFC. [c] Determined by ¹H NMR spectroscopy.

Nicewicz, D. A.; Yates, C. M.; Johnson, J. S. Angew. Chem. Int. Ed. 2004, 43, 2652.

Nicewicz, D. A.; Yates, C. M.; Johnson, J. S. Angew. Chem. Int. Ed. 2004, 43, 2652.

Table 2: Catalytic asymmetric cyanation/Brook rearrangement/C-acylation of acylsilanes [Eq. (3)]. [4]

Entry	Ar	SiR ₃	R'	Product		Yield [%] ^[6]	ee [%] ^[c]
	-			NC_OSIEI,		•	
1	Ph	SiEt ₃	Bn	CO₂Bn	62	83	79 ^[d]
		•		NC_OSirBuMe,			
2	Ph	SitBuMe₂	Bn	CO ₂ Bn	6 b	82 ^[r]	64 ^(d)
3	O.L.	5/5	5 .	NC OSIEI,		- alfi	let \
3	Ph	SiEt,	Et	CO ₂ Ei	6c	93 ^[1]	77 ^[d.g]
4	4-MeC ₆ H₄	C:Ex	Bn	NC OSIE1, CO₂Bn	c .1	70	e o i H
4	4-101eC6F14	SiEt,	DfI	Me	6 d	79	80 _{l⊢} l
5	2-naphthyl	SiEt,	Bn	NC_OSiEt ₃	6 e	90	62 ^[h]
,	znapititys	31213	on.		be	90	02'''
6	4-MeOC ₆ H₄	SiEt,	Bn	NC OSiEt ₃	6 f	84 ⁱⁱ	82 ^h
Ū	4-10/6006/14	31003	OII	MeO	01	0411	82.7
7	4-ClC ₆ H₄	SiEt ₃	Bn	NC OSIEI3	6 g	87	64 ^[h.i]
,	4-21-261-14	51613	DII	CI	o g	67	04
8	4-ClC ₆ H₄	SiEt,	Et	NC OSIEI3	6 h	87	61 ^[d.g]
Ü	4-0106114	3126	CI.	CI L	011	67	01. "
9	4-FC ₆ H₄	C:Ex	Bn	NC OSIEI ₃	6 i	81	78 ^[h,i]
7	4-FC ₆ FT ₄	SiEt ₃	Dfl	F	61	81	/8 ⁽⁻⁾
10	ANGCH	C:E:		NC. OSiEI₃ CO₂Bn	<i>-</i> -1		- ibi
10	4-NCC ₆ H₄	SiEt ₃	Bn	NC CO2BH	6 j	70	64 ^{th†}

Nicewicz, D. A.; Yates, C. M.; Johnson, J. S. Angew. Chem. Int. Ed. 2004, 43, 2652.

Summary

- Cyanohydrins are valued in organic synthesis for their umpolung reactivity.
- They also have vast potential as chiral building blocks so access to enantiopure substrates is desirable.
- The first catalytic asymmetric reaction of protected cyanohydrins has been developed.
- This domino sequence of cyanation/Brook rearrangement/C-acylation may serve as an efficient synthetic route for accessing enantioenriched and protected β -amino- α -hydroxy- α -aryl acids following reduction.

• Future work will focus on trapping the chiral (silyloxy)nitrile anions in other stereoselective bond forming reactions.