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Introduction: the (Morita)-Baylis—Hillman Reaction

M First example OH
O EWG PCyj; (cat.
il . r ys (cat.) _ EWG
R™ O H | 120-130 °C R

EWD = electron withdrawing group: CN or CO,R

No immediate notice was taken probably because of the low conversions.
K. Morita et al. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

B German researchers used tertiary amine catalysts such as DABCO.

High conversions
Versatile (broad substrates efc.)

A. B. Baylis and M. E. D. Hillman, German Patent, 2155113, 1972.

B Extended general scheme for the Baylis—Hillman Reaction

X XH
Iy EWG  tert. amine R’ EWG
Some Features - |( > R

1. Mild C—-C bond forming reactions
2. Atom economical process
3. Synthetically useful products

R= aryl, alkyl, heteroaryl; R' = H, COOR, alkyl
X= 0, NCOOR, NTs, NSO,Ph
EWG= electron withdrawing group :
COR, CHO, CN, COOR, PO(OEt),, SO,Ph, SO;Ph, SOPh

D. Basavaiah et al. Chem. Rev. 2003, 103, 811.
4/3/2006
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Synthetic Applications of the Baylis—H
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Synthetic Applications of the Baylis—Hillman Adducts
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D. Basavaiah et al. Chem. Rev. 2003, 103, 811.
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Currently Accepted Mechanism
for the (Morita)-Baylis—Hillman Reaction

B This mechanism was proposed by Hill
O and Isaacs on the basis of pressure effects
\)kx o-  and kinetic isotope effects (KIE) studies.

prd
P!
w
N
f
A
&
Z +
§
X
—

= . S. Hill and N. S. Isaacs, Tetrahedron Lett. 1986, 27, 5007.
1 step | s S. Hill and N. S. Isaacs, J. Phys. Org. Chem. 1990, 3, 285.
Q B Kinetic studies suggested that the reaction
\J\\)Lx '\ ot | R'cHO follows third-order kinetics overall or pseudo
1 step IV step second-order if the concentration of amine is
R _OH RDS 4 considered constant
7 L]
O~ O Rate = K_, [alkene][electrophile][amine]
+
+
RaN /I/LX —_— R3NYLX Rate = l(a [alkene][electrophile]
HO™ R step |l -0~ R! vhere K_ = K_, [3° amine]
6 5 M. L. Bode and P. T. Kaye, Tetrahedron Lett. 1991, 32, 5611.

Although other interesting observations such as rate acceleration with protic additives, salt effects,
MW effects have been appeared in the literature, those effects cannot be fully explained.

We need more mechanistic study, especially, the certain evidence.
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Some Evidences of Currently Accepted Mechanism

0
Of CH,Cl,, —10 °C to rt BT
o o

@)
DABCO coumarin salt
H + /\COQMG - >
OH CH,Cl,, 0 °C
40%

. M This is the first experimental study have
=y ol collected the evidence for the catalytic cycle.

M The authors explained that the counter ion
presumably came from solvent.

S. E. Drewes et al. Synth. Commun. 1993, 23, 2807.
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Some Evidences of Currently Accepted Mechanism
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Characterization by ESI(+)-MS/MS spectra

F. Coelho, M. N. Eberlin et al. Angew. Chem., Int. Ed. 2004, 43, 4330.
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New Interpretation of the Baylis—Hillman Mechanism

_ o _
Me < )\ 0 Ar f Ar

@ .
N~ N
@ 7 N6

B This new mechanism was proposed by McQuade et al. on the basis of reaction rate studies.

1. RDS is second order in aldehyde and first order in DABCO and acrylate (the proton transfer step).
Rate = K [aldehyde]’[DABCO][acrylate]

2. The proposed mechanism was also supported using kinetic isotope experiments.
3. This mechanism is general to aryl aldehydes under polar, nonpolar, and protic conditions.

D. T. McQuade et al. Org. Lett. 2004, 7, 147.
D. T. McQuade et al. J. Org. Chem. 2005, 70, 3980.
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New Interpretation of the Baylis—Hillman Mechanism
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B Aggarwal et al. also found that the RDS is the proton transfer step (step 3) based on
kinetic studies.

B Accoding their study, in the absence of protic solvents, step 3 is the RDS in the initial
phase of the reaction and that once the concentration of the product has built up, step 2
becomes the RDS.

V. K. Aggarwal, G. C. Lloyd-Jones et al. Angew. Chem., Int. Ed. 2005, 44, 1706
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Morita—Baylis—Hillman Alkylation and Allylation

a) PMe
O t-BuOH O )
o R
R | R' b) KOH/H,O R
BnEt,NCI
CH,Cl,
MBH alkylation R'= CH,Br R"'=H
MBH allylaton R'= CH=CHCH,CI R"= CH=CH,
(i) Nucleophile (1eq) Q
HoC | t-BuOH, rt HaC
E (i) KOH, BnEt;NCI E
E CH,Cly/H,0 (1:1) E
1, X=Br;4 X=CI;5 X=1I 6
Entry X Nucleophile Time (h) Yield (%)*
1 Cl Bu;P 72 12°
2 Cl Me;P 72 46¢
3 Br BusP 3 99
4 Br Me;P 5 96
5 I Bu;P 3 87
6 I Me;P 24 d

“ Isolated yields after purification by silica gel chromatography.
P Excess BusP (3 equiv.) added over 3 d; 18% recovery of chloride.
“ Excess MesP (4 equiv.) added over 3 d; 10% recovery of chloride.
¢ Decomposition of enone.

Shinya limura @ Wipf Group 11

Bl Amine nucleophiles (DABCO,
quinuclidine, DBU, DMAP) were
ineffective for these reactions.

X-Cl, Me,P or Bu,P, +-BuOH

or 95-99% recovered

NN = | . .
X X=Br, MesP g: Bu,P, +-BuOH starting material
X=I, BusP, t-BuOH
/\/\/\+ -
/\/\/\l Me,P, +-BuOH PMe; |

B These results clearly point out the
delicate balance of reactivity between
the nucleophile and electrophilic
centers in the molecule.

rafft et al. Chem. Commun. 2005, 5772.

M.E. K
M. E. Krafft et al. J. Am. Chem. Soc. 2005, 127, 10168.
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Mechanistic Implications in the

Morita—Baylis—Hillman Alkylation

o) i O OH 0 a) PMe, O
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One-pot, two-stage process

In the MBH alkylation, the resulting phosphonium counterion is a weakly basic halide ion.

|

It is necessary to add base to promote the second stage of the reaction.

|

Open the possibility for isolation and characterization of a reaction intermediate.

M. E. Krafft et al. J. Am. Chem. Soc. 2006, ASAP.
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Mechanistic Implications in the
Morita—Baylis—Hillman Alkylation

Br
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o 3 q _ @.
'‘BUOH, 3 h MesP O
o) © Ph
Ph 98% Br

Recryst. from cyclohexane/CH,CI,
under argon

B X-ray analysis showed that the ring substituents are in the trans orientation.

B NMR study suggested that the ketophosphonium salt was formed under
kinetic conditions.

B The authors claimed, for the first time, the isolation of a phosphonium salt from a
MBH alkylation and its structure determination by X-ray.

M. E. Krafft et al. J. Am. Chem. Soc. 2006, ASAP.
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Mechanistic Implications in the
Morita—Ba ylis—HiIIman Alkylation

O)-enolate E(O)-enolate
©Br @ ¢
Me,P O

Ph

E F G
Z(O)-enclate OBr E(O)-enolate

® &
Me,P /—0
not observed

Interestingly, none of the four conformations exhibit any obious electrostatic interaction
between the positively charged phosphorous and the negatively charged enolate oxygen,
an attractive force that has been the cornerstone of the traditional MBH explanation.

M. E. Krafft et al. J. Am. Chem. Soc. 2006, ASAP.
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Summary

B The authors have isolated for the first time a MBH intermediate exhibiting unprecedented
frans geometry of the phosphonium salt and acyl group.

OR
Br Me;P O
Me3P o PH KOH/H,0
'BuOH Br BnEt;NCI
— } CH,Cl, o)
o) Ph
Ph

The lack of the previously accepted electrostatic stabilization of the zwitterionic intermediate
Provides new insight into the MBH mechanism.

M. E. Krafft et al. J. Am. Chem. Soc. 2006, ASAP.
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