Ruthenium- and Platinum-Catalyzed Sequential Reactions: Selective Synthesis of Fused Polycyclic Compounds from Propargylic Alcohols and Alkenes

Yoshiaki Nishibayashi,^{*} Masato Yoshikawa, Youichi Inada, Masanobu Hidai, and Sakae Uemura^{*}

J. Am. Chem. Soc., ASAP Article 10.1021/ja045532k S0002-7863(04)05532-5

Web Release Date: November 18, 2004

Introduction

- Bimetallic system, different catalytic cycle, same medium.
- No successive addition of reagents. No change in temperature or atmosphere on the way.

•Bimetallic system, different catalytic cycle, same medium.

Catalysts activating different functional groups.

Pd⁰-Cu¹ synthesis of indoles from isocyanates:

Yamamoto et al, ACIEE, 2002, 41, 3230.

Asymmetric Tsuji-Trost:

•Bimetallic system, different catalytic cycle, same medium.

Catalysts activating intermediates sequentially.

Pd⁰-Rh¹ synthesis of bicyclopentenones:

Jeong et al, *JACS*, **2000**, *122*, 10220 4

Triple Tandem catalysts mix synthesis of polyethylenes:

Bazan et al, *JACS*, **2002**, *124*, 15280.

Results and Discussion

Table 1. Reaction of Propargylic Alcohol (**2a**) in the Presence of Chalcogenolate-Bridged Diruthenium Complex (**1**) and Other Catalyst^a

Best conditions: CICH₂CH₂CI, NH₄BF₄ (10 mol%), 60 °C, 24h.

 $PtCl_4$, $PdCl_2$, $AuCl_3$ and $[Rh(OAc)_2]_2$ not effective.

Selenolate-bridged diruthenium complex afforded moderate yield, but the Tellurolate one provided low yield.

Uemura, Nishibayashi et al, JACS, 2004, ASAP.

Scope and limitation:

R 5 6	OH Cat. 1a and 2	PtCl ₂ R	H + R H H H H H H H H H H H H H H H H H
run	propargylic alcohol	yield of 4 (%) ^{b}	ratio of isomers ^c (syn-4:anti-4)
1	2a, R = H	4a , 75	92:8
2	2b, R = 4-Me	4b , 76	91:9
3	2c, R = 4-OMe	4c , 66	92:8
4	2d, R = 4-Cl	4d , 65	94:6
5	2e, R = 4-Br	4e , 69	93:7
6	$2f, R = 4-NO_2$	4f , 70	95:5
7	2g, R = 6-Me	4g , 83	92:8
8	$2\mathbf{\tilde{h}}, \mathbf{R} = 6$ -OMe	4h , 81	92:8
9	2i, R = 4-Cl, 6-Cl	4i , 38	98:2
10	2j, R = 4-Br, 6-Br	4j , 39	93:7

Uemura, Nishibayashi et al, JACS, 2004, ASAP.

Scope and limitation:

Uemura, Nishibayashi et al, JACS, 2004, ASAP.

[Ru]/PtCl₂ system and the synthesis of furans and pyrrols:

Hidai, Uemura et al, ACIEE, 2003, 42, 2681.

So, the mechanism

Hidai et al, *JACS*, **2000**, *122*,11019. Hidai, Uemura et al, *JACS*, **2003**, *125*,6060. Hidai, Uemura et al, *JACS*, **2002**, *124*,15172.

So, the mechanism.

Conclusion

- Fused polycyclic compounds made through a bimetallic catalytic system in a sequential [Ru]^I promoted propargylic alcohol substitution, followed by a PtCl₂ cycloisomerisation.
- •Catalysts operating in the same conditions. Simple experiment set up.
- Moderate to excellent yields, good diastereoselectivity.
- Broadening of the scope of the sequence is necessary.
- Application in natural products synthesis was not mentioned.