Catalytic Asymmetric 1,4-Addition Reactions Using [],[]-Unsaturated N-Acylpyrroles as Highly Reactive Monodentate [],[]-Unsaturated Ester Surrogates

Shigeki Matsunaga, Tomofumi Kinoshita, Shigemitsu Okada, Shinji Harada, and Masakatsu Shibasaki*

J. Am. Chem. Soc., **ASAP Article** 10.1021/ja0485917 S0002-7863(04)08591-9

Web Release Date: May 26, 2004

Introduction

- Catalytic asymmetric 1,4-additions to □,□unsaturated ketones.
- For [],[]-unsaturated esters lower reactivity is an issue.
- Monodentate Vs bidentate substrates.
- Objective: development of monodentate ester substitute.

Preparation of Ylide 2

Conditions: (i) 2,5-dimethoxytetrahydrofuran, AcOH, 100 C; (ii) PPh3, toluene, 100 C; (iii) 2 M aq NaOH, CH2Cl2/H2O; (iv) THF/Et2O, -78 to 25 C.

Proposed catalytic cycle for the epoxidation promoted by Ln-Binol complex.

- Ln-Binol complex favors monodentate coordination.
- Not applicable for [],[]unsaturated esters.
- Bidentate substrates, oxazolidinone, carboxylic acid imidazolide and [],[]unsaturated morpholinyl amide: not practical results.
- Poor conversion;
- High catalyst loading;
- Explosive TBHP;
- Unstable, low soluble and difficult to prepare substrates.

Table 2. Catalytic Asymmetric Epoxidation Reaction of α,β-Unsaturated N-Acylpyrrole 1a

entry	Sm(O- <i>i</i> -Pr)₃ (x mol %)	ligand (x mol %)	additive (y mol %)	solvent	oxidant <i>a</i>	time (h)	yield ⁵ (%)	ee ^c (%)
1	10	BINOL (10)	Ph ₃ As(O) (10)	THF	ТВНР	0.5	93	94
2	5	BINOL (5)	Ph ₃ As(O) (5)	THF	TBHP	0.5	85	96
3	5	H ₈ -BINOL (5)	Ph ₃ As(O) (5)	THF	TBHP	0.5	94	99
4	5	H ₈ -BINOL(5)	Ph ₃ P(O) (15)	THF	TBHP	0.5	84	94
5	5	H ₈ -BINOL (5)	Ph ₃ P(O) (50)	THF	TBHP	0.5	88	98
6	5	H ₈ -BINOL(5)	Ph ₃ P(O) (100)	THF	TBHP	0.5	85	97
7	5	H ₈ -BINOL (5)	Ph ₃ P(O) (15)	THF/toluene	TBHP	0.4	85	96
8	5	H ₈ -BINOL(5)	Ph ₃ P(O) (50)	THF/toluene	TBHP	0.5	92	99
9	5	H ₈ -BINOL (5)	Ph ₃ P(O) (100)	THF/toluene	TBHP	0.2	97	99
10	5	H ₈ -BINOL(5)	Ph ₃ P(O) (100)	THF/toluene	CMHP	0.2	91	> 99.5

a TBHP in decane or CMHP in toluene was used. b Isolated yield. C Determined by chiral HPLC analysis.

First tunning:

•Ligand: H8-BINOL 5 mol%;

•Lanthanide: Sm(O-*i*-Pr)₃ 5 mol%;

•Additive: Ph₃P(O) 100 mol%;

Oxidant: TBHP or CMHP

•Solvent: THF/toluene.

Table 3. Trials to Reduce Catalyst Loading in Catalytic Asymmetric Epoxidation Reaction of α,β-Unsaturated N-Acylpyrrole 1

entry	Sm(O- <i>i</i> -Pr)₃ (x mol %)	H ₈ -BINOL (x mol %)	additive (y mol %)	MS 4 Å (mg/mmol of 1a)	concn of [1a] (M)	time (h)	yield² (%)	ee ^b (%)
1 <i>c</i>	5	5	Ph ₃ P(O) (100)	1000	0.1	0.2	97	99
2^c	1	1	Ph ₃ P(O) (100)	500	1	0.3	94	99
3^d	0.5	0.5	Ph ₃ P(O) (100)	250	1	0.6	100	97
4^d	0.2	0.2	Ph ₃ P(O) (100)	100	2	1	99	97
5^d	0.1	0.1	Ph ₃ P(O) (100)	100	2	2	90	96
6^d	0.1	0.1	$Ph_3As(O)(0.1)$	100	3	0.6	100	99
7 ^d	0.05	0.05	Ph ₃ As(O) (0.05)	100	3	1	100	98
8^d	0.02	0.02	Ph ₃ As(O) (0.02)	100	3	1.5	94	99

a Isolated yield. b Determined by chiral HPLC analysis. TBHP in decane was used. Anhydrous TBHP in toluene (dried with MS 4A) was used.

Second tunning:

- •H8-BINOL/Sm(O-*i*-Pr)₃ as low as 0.1, 0.05 and 0.02 mol%;
- •Keep the catalyst concentration within 1-5mM for best *ee*'s;
- •Practical aspects for large scale: reduced MS amounts, catalytic loading.
- •Catalytic Ph₃As=O; equimolar Ph₃P=O.

Sequential Wittig Olefinaton-Catalytic Asymmetric Epoxidation

(A) One-pot Sequential Wittig-Catalytic Asymmetric Epoxidation Process

(B) Step-by-step Wittig-Catalytic Asymmetric Epoxidation Process

Electronic properties of [],[]-unsaturated N-acylpyrrole

Epoxidation profile of __,_-unsaturated ketones and __,_-unsaturated carboxylic acid __o

derivatives.

OIO O Ph₃As()

X TBHP

1a, 17-20 THF

H₈-BINOL (5 mol %)
Ph₃As(O) (5 mol %)
TBHP in decane
THF, -10 °C

Sm(O-i-Pr)3 (5 mol %)

• Imidazoline 17 > phenyl enone 18 > Nacyl pyrrole 1a > methyl enone 19 >> amide 20.

Scheme 4. Catalytic Asymmetric Epoxidation Reaction of (a) Unsaturated *N*-Acylpyrrole **1a** and (b) *N*-Acylimidazolide **17** with 5 and 1 Mol % Sm Catalyst

Better solubility then the N-acylimidazolide **17**.

Transformations of Pyrrolyl Epoxides. Conditions: (i) *tert*-butyl acetate, BuLi, -78 C; then DBU, 25 C, (74%); (ii) PhLi, then DBU, 25 C, (88%); (iii) BuLi, 1-pentyne, -78 C, then DBU, 0 C, (84%); (iv) LiBH4, 0 to 25 C; then NaBH4, 25 C, (72%); (v) LiBH4, 25 C, then (EtO)₂P(O)CH₂CO₂Et, LiCl, DBU, 25 C,(69%).

Transformation of Michael Adduct. Conditions: (i) EtSLi, EtOH, 25 C, 2 h, y. 96%.

Preparation of Synthetic Intermediate for Antifungal Natural Product. Conditions: (i) ylide **2**, toluene, 85 C, then Sm(O-*i*-Pr)3 (5 mol %), (*S*)-H8-BINOL (5 mol %), MS 4A, THF/toluene, CMHP, 25 C, 0.8 h, y. 83% (from **10n**), 96% ee; (ii) CH3C(O)N(OCH3)CH3, LHMDS, THF, -78 C, 20 min; then DBU, CH2Cl2, 25 C, 40 min, y. 63% (two steps).

Synthesis of Intermediate **33** in Smith's Total Synthesis of Phorboxazole A.

(i) PhSeSePh, NaBH₄, 25 C (94%); (ii) EtSLi, EtOH, 25 C,(92%); (iii) CH₃I, Ag₂O, MS 3A, toluene, 45 C, (93%); (iv) LiAlH₄, Et₂O, 25 C,(85%); (v) TBSCI, imidazole, 25 C, (86%); (vi) H₂ Pd(OH)₂, NaHCO₃, 25 C, (96%); (vii) PCC, AcONa, MS 3A, 25 C, then $(CH_3O)_2P(O)C(N_2)COCH_3$, 25 C, (57%); (viii) BuLi, -78 C; then CH_3I , -78 C to 25 C, (91%); (ix) Bu₄N+F-, 25 C, (88%).

Conclusion

- Modentate ester surrogate □,□-unsaturated N-acylpyrrole;
- Good to excellent yields and ee's for epoxidation;
- Good results for the first asymmetric Michael additions, but still limited;
- One spot transformation aldehyde to epoxide;
- Further investigations.