Palladium-Catalyzed Alkylation of sp² and sp³ C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways

Xiao Cheng, Charles Goodhue, and Jin-Quan Yu Brandeis University J. Am. Chem. Soc. ASAP

C-H Functionalization

- C-H most fundamental linkage in organic chemistry
- Resistant to selective chemical transformations
- Bond Dissociation C-H is large H-CH₃ 105 kcałmol H-C₆H₅ 110 kcałmol
- C-H activation disconnection strategy that will provide alternatives to conventional methods---in a single preparative step

Ni Cr Co Cu Mn Ti V Fe Sc Zn Ru Rh Pd Tc Y Zr Nb Mo Ag Cd W Ta Ir Hg Hf Re Os Pt Au La

For Reviews see: Dyker, G. Angew. Chem. Int. Ed. **1999**, *38*, 1698-1712. Pfeffer, M.; Ritleng, V. Chem. Rev. **2002**, *102*, 1731-1769.

Pioneering Studies

• 1965-Chatt and Davidson

Kleiman, J.P.; Dubeck, M. *J. Am. Chem. Soc.* **1963**, 1544. Chatt, J.M.; Davidson, M. *J. Am. Chem. Soc.* **1965**, 843. Stoichiometric cleavage of C-H bond: *Chem Rev.* **1997**, *97*, 2879.

Catalytic C-H activation

• 1989-Jordan

• 1992-Moore

Taylor, D.; Jordan, R. *J. Am. Chem. Soc.* **1989**, *111*, 778-779.; Moore et al. *J. Am. Chem. Soc.* **1992**, *114*, 5888. Murai, S.; Kakiuchi, S.; Sekine, S.; Tanaka, A.; Kamatani, M.; Chatani, N. *Nature*, **1993**, *366*, 529.

- Directed C-H activation is favored by a σ chelating heteroatom that is conjugated to the aryl rings
- Direct coupling of C-H bonds with organometallic reagents
- Many recent examples of pyridine and carbonyl directed arylation of sp² and sp³ C-H bonds

Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.

Alkylation using Organotin

Chen, X.; Li, J-J.; Hao, X-S.; Goodhue, C. E.; Yu, Jin-Quan J. Am. Chem. Soc. 2006, 128, 78-79.

Pd-catalyzed Alkylation of Aryl C-H Bonds

^{*a*} Oxa = 4,4-dimethyloxazoline-2-, Pd(OAc)₂ (10 mol %), organotin agents (0.075 equiv \times 10), Cu(OAc)₂ (1 equiv), benzoquinone, 1 equiv, leCN, 100 °C, 40 h.

- Non- π -conjugated chelation assisted catalytic C-H activation are still rare but is possible in this instance
- Various primary alkyl tin reagents were used

• Drawback

Long reaction time-batchwise addition

==> still drawbacks---batchwise addition, toxicity of Organotin reagents

Alkylation with alkylboroxine and boronic acids

• C-H activation/C-C coupling using boronic acids is plausible

$$R_{akyl} = Br \quad (HO)_{2}B = R \qquad \begin{array}{c} 5\% \ Pd(OAc)_{2} \\ 10\% \ phosphine \\ \hline 3 \ equiv \ KOtBu \\ t-amyl \ alcohol, \ r.t. \\ R = aryl, \ vinyl, \ alkyl \end{array} \qquad R_{alkyl} = R$$

- Challenge:
 - Pd(II) catalyzed homocoupling of organometallic reagent is faster than C-H activation
 - The palladacycle formed from the C-H activation step can also catalyze homocoupling (transmetalation and reductive elimination must be faster)

Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G.C. J. Am. Chem. Soc. 2002, 124, 13662.

Methylation of sp² C-H

^{*a*} 10 mol % of Pd(OAc)₂, 1 equiv of benzoquinone, 1 equiv of Cu(OAc)₂, equiv of methylboroxine, 100 °C, 24 h, CH₂Cl₂, air. ^{*b*} 10% dimethylated bduct was isolated.

Methylation of sp³ C-H

^{*a*} 10 mol % of Pd(OAc)₂, 2 equiv of benzoquinone, 2 equiv of Cu(OAc)₂, equiv of methylboroxine, 100 °C, 24 h, HOAc, O₂.

Alkylation of C-H Bonds

Indication that transmetalation is problematic

Optimization:

Solvents: **t-Amyl alcohol**, t-Butyl alcohol, DMF, Dioxane, Toluene, HOAc Oxidants & Additives: **Ag₂O**, Cu(OAc)₂, H₂O, K₂CO₃, KOAc, Cu₂O, MnO₂, AgOAc, **Ag₂CO₃**

Alkylation of C-H Bonds

^{*a*} 10 mol % of Pd(OAc)₂, 1 equiv of Ag₂O, 0.5 equiv of benzoquinone, equiv of boronic acid, 100 °C, 6 h, *tert*-amyl alcohol, air.

Mechanistic Insights

•Kinetic Isotope Effect: changes in rate observed when a ¹H is replaced by a ²D in the same reaction.

•This change can affect the rate of the reaction only if H(or D) is involved in the rate determining step

• $K_{H/D}$ for cyclopallidation with MeB(OH)₂ is 7.3.

•Dimeric palladacycle reacts only with boronic acids under the optimized conditions, not the conditions used for methylboroxine.

• $K_{H/D}$ for methylation with MeB(OH)₂ is 6.7 and with methylboroxine is 3.0.

•Intermolecular KIE with $MeB(OH)_2$ is 4.0 and with methylboroxine is 3.5.

suggests that C-H cleavage is the rate determining step in both reactions

C-H Activation Pathways

Boronic Acids

Methylboroxine

Summary

- One pot procedure for the coupling of sp² and sp³ C-H bonds with alkylboroxines and alkylboronic acids has been developed using Pd(II).
- Mechanistic studies utilizing kinetic isotope effects indicate two distinct pathways for C-H activation.
- Expand scope by using other directing groups and organometallic reagents
- Many reports focused on investigations on the scope and limitations of these types of reactions, only a few cases of applications towards natural products.