

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Selective Synthesis of Multisubstituted Cycloheptadienes

Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. Engl. 2006, 45, 2446

Michel Grenon

April 1st, 2006

Presentation Outline

Cher Transition-Metal Catalyzed Cycloadditions for the Construction of Seven-Membered Rings

- [6+1] Cycloaddition of arenes with α -diazo carbonyl compounds
- [5+2] Cycloaddition of vinylcyclopropanes with alkynes
- [4+3] Cycloaddition of dienes with TMM derivatives

Previous Examples of Transition-Metal Catalyzed(Mediated) [3+3+2] Cycloadditions for the Construction of Seven-Membered Rings

- Iridium-mediated allyl/alkyne [3+2+2] cycloaddition
- Cobalt-mediated allyl/alkyne [3+2+2] cycloaddition
- Nickel and Rhodium-catalyzed [3+2+2] cycloaddition of alkenyl Fischer carbene complexes and allenes

> Nickel-Catalyzed Intermolecular [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

➡ Future Work

Anciaux, A. J.; Demonceau, A.; Noels, A. F.; Hubert, A. J.; Warin, R.; Teyssie, P. *J. Org. Chem.* **1981**, *46*, 873

 \Box Substituted arenes give mixtures of isomeric products

CO₂Et

McKervey, M. A.; Tuladhar, S. M.; Twohig, M. F. J. Chem. Soc., Chem. Commun. 1984, 129

Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091

(excess)

 N_2

 $Rh(O_2CCF_3)_2$, rt

100%

Transition-Metal Catalyzed [5+2] Cycloaddition

- Formation of a metallacycle, followed by a straindriven cleavage of the cycloprane ring and a reductive elimination to the cycloheptadiene
- ➡ An increase in reaction rate is also observed when the reactions are performed in CF₃CH₂OH

A: 0.5 mol % [RhCl(PPh3)3], 0.5 mol % AgOTf;

B: 10 mol % [RhCl(PPh3)3];

C: 10 mol % [RhCl(PPh3)3], 10 mol % AgOTf.

Wender, P. A.; Takahashi, H.; Witulski, B. *J. Am. Chem. Soc.* **1995**, *117*, 4720 Lautens, M.; Klute, W.; Tam, W. *Chem. Rev.* **1996**, *96*, 49

Transition-Metal Catalyzed [4+3] Cycloaddition

Trost, B. M.; Nanninga, T. N.; Chan, D. M. T. Organometallics 1982, 1, 1543

 \Box Freezing the diene in a cisoid conformation favors the formation of the seven-membered ring

Trost, B. M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109, 3483

Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49

Iridium-mediated allyl/alkyne [3+2+2] cycloaddition

☐> Stoichiometric reaction, and poor selectivities are obtained for unsymmetrical alkynes

Schwiebert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1995, 117, 8275

Cobalt-mediated allyl/alkyne [3+2+2] cycloaddition

Conditions: i. $(C_5Me_5)Co(C_2H_4)_2$ (1), TfOH, Et_2O , -78 °C \rightarrow RT, 4h ii. $(C_5Me_5)Co(C_2H_4)_2$ (1), hexane, 65 °C, 4-12h; then step i.

- □ Dramatic solvent effect (THF affords cyclopentadienyl complexes)
- Conditions: CH₂Cl₂, excess alkyne (3 to 10 equiv.), −78 °C to rt, 12 h
- ➡ Nucleophilic alkylation (Na-dimethylmalonate) of 3, followed by an oxidative decomplexation using [Cp₂Fe]⁺⁻OTf affords substituted cycloheptadienes

Etkin, N.; Dzwiniel, T. L.; Schweibert, K. E.; Stryker, J. M. J. Am. Chem. Soc. 1998, 120, 9702

Nickel and Rhodium-catalyzed [3+2+2] cycloaddition of alkenyl Fischer carbene complexes and allenes

Reaction affords the [3+2] cycloadduct when performed in toluene

	entry	R ¹	R ²	R³	R ⁴	4 (%) ^{a,b}	5 (%) ^a
ſ	1	p-MeOC ₆ H ₄	Н	Me	Me	4a (53)	5a (55)
Done with Ni(cod) ₂	2	ⁿ Bu	Н	Me	Me	4b (40)	5b (61)
	3	Ph	Η	Me	Me	4c (52)	
	4	2-furyl	Η	Me	Me	4d (56)	
	5	ⁱ Bu	Н	Me	Me		5c (70)
	6	^t Bu	Н	Me	Me		5d (58)
	7	Me	Н	Me	Me		5e (60)
	8	ferrocenyl	Н	Me	Me		5f (63)
	9	Me	Me	Me	Me		5g (71)
	10	Me	Н	-(CH ₂) ₅ -			5h (64)
	11	Me	Me	Ph	Ph		5i (55)
	12	Me	Н	Ph	Η		5j (50)

Barluenga, J.; Vicente, R.; Barrio, P.; Lopez, L. A.; Tomas, M.; Borge, J. J. Am. Chem. Soc. 2004, 126, 14354

Least substituted C=C bond of the allene inserts (head-to-head allene–allene coupling)

Nickel and Rhodium-catalyzed [3+2+2] cycloaddition of alkenyl Fischer carbene complexes and allenes

- Least substituted C=C bond of the allene inserts (head-to-tail allene–allene coupling)
- Reversible metalla-[4+2] cycloaddition gives IV, which evolves to the more stable V

	entry	R ¹	R ²	R ³	R ⁴	4 (%) ^{a,b}	5 (%) ^a
]	1	p-MeOC ₆ H ₄	Η	Me	Me	4a (53)	5a (55)
1	2	ⁿ Bu	Н	Me	Me	4b (40)	5b (61)
	3	Ph	Н	Me	Me	4c (52)	
	4	2-furyl	Н	Me	Me	4d (56)	
ſ	5	ⁱ Bu	Н	Me	Me		5c (70)
	6	'Bu	Н	Me	Me		5d (58)
	7	Me	Н	Me	Me		5e (60)
Done with	8	ferrocenyl	Н	Me	Me		5f (63)
[Rh(cod)Cl] ₂	9	Me	Me	Me	Me		5g (71)
	10	Me	Н	-(CH ₂) ₅ -			5h (64)
	11	Me	Me	Ph	\mathbf{Ph}		5i (55)
L	12	Me	Η	Ph	н		5j (50)

Barluenga, J.; Vicente, R.; Barrio, P.; Lopez, L. A.; Tomas, M.; Borge, J. J. Am. Chem. Soc. 2004, 126, 14354

Nickel-Catalyzed Intermolecular [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

	L)OEt + R ¹ -=	≡−R ²	
	1a (1 m Ni(P dro	$\frac{1}{2} (5) = \frac{10 \text{ mol}}{2} (10 \text{ mol}) = \frac{10 \text{ mol}}{10} = \frac{100 \text{ mol}}{10} = 10$		ն ¹ 3
entry	cmpd	R1	R ²	yield of 3(%) [®]
1	2a	(CH ₃) ₃ Si	Н	70
2	2a	(CH ₃) ₃ Si	Н	25°
3	2a	(CH ₃) ₃ Si	Н	57ª
4	2a	(CH ₃) ₃ Si	Н	59°
5	2b	(CH ₃) ₃ C	Н	89
6	2c	Ph	Н	74
7	2d	4-MeOC ₆ H₄	Н	72
8	2e	$4-FC_6H_4$	Н	59 ^f
9	2f	HO(CH ₃) ₂ C	Н	56
10	2g	$n-C_3H_7$	$n-C_3H_7$	31°
11	2h	$n - C_6 H_{13}$	Н	8

 \Box Good results obtained with sterically hindered terminal alkynes (entries 1–9)

 \Box Other phosphines [P(Bu)₃, P(Cy)₃, P(*t*-Bu)₃, dppe] were less effective

 \Box Other catalysts [RhCl(PPh₃)₃, CpCo(PPh₃)₂, CpCp(CO)₂] were not effective

Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Selective Synthesis of Multisubstituted Cycloheptadienes

Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. Engl. 2006, 45, 2446

Nickel-Catalyzed Intermolecular [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

CO ₂ Et	(4 equiv.) TMS ── ═ R──═	Ni(cod) ₂ (10 mol%) PPh ₃ (20 mol%)	CO ₂ Et		
	(1 equiv.)	Toluene, rt, dropwise addition of reagents	R TM	S	
	Entry	R	Yield (%)		
	1	MeOCH ₂	69		
	2	TBDMSOCH ₂	67		
	3	PhCH ₂	66		
	4	<i>n</i> -C ₆ H ₁₃	68		
	5	Ph	56		
	6	<i>p</i> -MeOC ₆ H ₄	65		
	7	<i>p</i> -CF ₃ C ₆ H ₄	74		
	8	HO(CH ₃) ₂ C	69		

 \square DMF can also be used, but not THF, Et₂O or CH₂Cl₂

Terminal alkyne doesn't need to be bulky in order to get good regioselectivities (see different R groups)

Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. Engl. 2006, 45, 2446

Nickel-Catalyzed Intermolecular [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. Engl. 2006, 45, 2446

Future Work

 \Box Extend this reaction to other cyclopropylmethylene derivatives

 \Box Extend this reaction to cyclobutylmethylene derivatives

 \Box Attempt to apply this methodology to the synthesis of complex natural products