

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

Michel Grenon June 25th, 2005

Presentation Outline

Deoxyribozymes (DNAzymes): DNA Catalysts for Bioorganic Chemistry

Example of DNAzyme that cleaves RNA

In vitro selection approach to synthesize DNAzymes

Example of DNAzyme that ligates RNA

Other reactions catalyzed by DNAzymes

DNAzymes catalytic parameters, mechanism and structures

DNA-based Asymmetric Catalysis

Concept

Synthesis of ligands

Application to ^a copper-catalyzed Diels-Alder reaction

Perspectives

 \triangleright Relatively few studies focus on nucleic acids as catalysts for bioorganic chemistry

- The study of DNAzymes is only about a decade old, whereas that of RNAzymes goes back over 20 years
- \triangleright Reasons for lack of development in this field
	- Compared with proteins, there are much less functional groups available

Emerging Area: Silverman, S. K. Org. Biomol. Chem. **2004**, 2, 2701

Michel Grenon @ Wipf Group 3 3 7/1/2005

base

 \triangleright First examples of catalytic DNA: deoxyribozymes that cleave RNA

- This reaction is the same as that promoted by most protein ribonucleases such as R Nase A
- An *in vitro* selection approach can be used to identify RNA-cleaving DNAzymes

 \triangleright In vitro selection approach to synthesize DNAzymes that cleave RNA

! Other examples of catalytic DNA: deoxyribozymes that ligate RNA

 \triangleright Deoxyribozyme catalytic parameters, mechanism and structures

Quantitative assessment of a DNAzyme's catalytic activity can be made by comparing its rate constant to that of an appropriate background reaction

rate enhancement = $k_{\text{obs}}/k_{\text{bkg}}$

rate enhancements of 10^6 to 10^7 for RNA ligation reactions rate enhancement as high as 10^{10} observed for other DNAzymes

Little is known about the structures and mechanisms of any DNAzymes

 \triangleright Why study DNAzymes instead of RNAzymes?

- If DNA and RNA have similar catalytic potential, practical concerns favor the use of DNA;
	- 1) DNA less expensive to make by solid-phase synthesis (ca 7 times less)
	- 2) DNA can generally be made in longer sequence lenghts and higher purity
	- 3) Relative chemical and biochemical stability (ubiquitous ribonucleases)

 \triangleright Other reactions catalyzed by DNAzymes that covalently modify nucleic acids

Change in the phosphorylation status of an RNA or DNA strand

DNA phosphorylation DNA adenylation (capping)

- DNA deglycosylation
- Porphyrin metalation
- Thymine dimer photoreversion
- DNA cleavage

 \triangleright What do all these processes have in common?

The use of *single-stranded* DNA for catalysis

 \geq Is it possible to use duplex-DNA to catalyze a specific reaction?

 \triangleright Can the chirality of the DNA double helix be transfered directly to a metal-catalyzed reaction?

Exploit the propensity of small aromatic molecules to interact with DNA in a noncovalent, yet kinetically stable way

• The reaction...

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

 \triangleright Synthesis of the ligands

$n = 3$

 $R = Me$, t -Bu, Benzyl, 1-Naphthylmethyl, 2-Naphthylmethyl 4-MeOC $_6$ H₄CH₂, 3,5(MeO)₂C $_6$ H₃CH₂

$n = 2, 4, 5$

 $R = 1$ -Naphthylmethyl, 3,5(MeO)₂C₆H₃CH₂

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

Michel Grenon @ Wipf Group 10 10 10 7/1/2005

^a Catalyst (0.18 mM), dienophile (4 mM), cyclopentadiene (34 mM)

 b Calf thymus DNA c ca. 50% conversion</sup></sup>

• No significant ee when $R = 2$ -Naphthylmethyl

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

^a Catalyst (0.18 mM), dienophile (4 mM), cyclopentadiene (34 mM)

b Calf thymus DNA

 c DNA = synthetic duplex d(GACT)₂-(AGTC)₂ (0.39 mM), cyclopentadiene (21 mM)

 d ca. 50% conversion

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

^a Reaction performed at 5 ˚C

Roelfes, G.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. **2005**, 44, 3230

Perspectives

- \triangleright The chirality of duplex DNA can be transfered directly to a catalytic reaction
- \triangleright *Both* enantiomers of the Diels-Alder adduct are accessible by a judicious choice of ligand
- \triangleright Rapid structural variation and optimization of catalysts for new reactions
- ! Ease of purification (Cu-ligand-DNA complex remains in aqueous solution)

Futur work should focus on

- \triangleright The possibilty to address specific DNA sequences by using a selective DNA binding moiety tethered to the catalyst
- \triangleright Extending to other reactions that can be performed in buffered aqueous solutions (metal-catalyzed reactions, organocatalysis)