Construction of Tetrahydrofurans by Pd(II)/Pd(IV) -Catalyzed Aminooxygenation of Alkenes

Desai, L.; Sanford, M.S. Angew. Chem. Int. Ed., 2007, 46, 5737-5740.

Melissa Sprachman

July 28, 2007

Oxidative Functionalization Via Pd^{IV} Intermediates

Yoneyama, T.; Crabtree, R.H. J. Mol. Catal. A 1996, 108, 35.

Slide info first found in: Gorin, D. ACS Fellowship essay, Univ. California Berkeley, Berkeley, CA 2006.

Dick, A.R.; Hull, K.L.; Sanford, M.S. J. Am. Chem. Soc. 2004, 126, 2300.

R = H, Me; X = R, Ar, X, NO₂

C-O Bond Forming Reductive Elimination Upon Heating:

Dick, A.R.; Kampf, J. W..; Sanford, M.S. J. Am. Chem. Soc. 2005, 127, 12790.

Aminopalladation Background

--Aliphatic amines often displace the alkene from the palladium center

--Amides are viable alternatives due to their decreased basicity.

Recent Work in Aminopalladation/Aminoacetoxylation Chemistry

Alexanian, E. J.; Chulbom, L.; Sorenson, E.J. J. Am. Chem. Soc. 2005, 127, 7690.

Melissa Sprachman @ Wipf Group

Stahl and Sanford's Approach to Aminoacetoxylation

6

Intermolecular Pd-Catalyzed Aminoacetoxylation of Alkenes (Stahl)

Key Features:

--Excellent Regioselectivity (no phthalimide addn at the terminal carbon observed)

- --Substantial yields, even for unactivated alkenes
- -- Single diastereomers observed by ¹HNMR:

--Favorable yields with allylic Oxygens suggest chelation; Yields drop with vinyl ethers (45%) And homoallylic ethers (30%)

Liu, G.; Stahl, S. J. Am. Chem. Soc. 2006, 128, 7179.

Melissa Sprachman @ Wipf Group

Reactions with $PdCl_2(CH_3CN)_2$ and $Phl(OAc)_2 = \frac{7/30}{2007}$

7

Sanford: Suppression of β -Hydride Elimination Using Tethered Alcohols

Possible S_N2 Mechanisms for Aminooxygenation:

--Subjection of authentic samples of either substrate did not yield amidated THF products

Alternative Routes Considered

Only the *trans* THF products were observed.

Melissa Sprachman @ Wipf Group

Determination of the Stereochemistry of Aminopalladation

Liu, G.; Stahl, S. J. Am. Chem. Soc. 2006, 128, 7179.

Support from Stahl's Work:

Possible routes:

A) *trans*-aminopalladation followed by oxidative Pd-C cleavage with retention

B) *cis*-aminopalladation followed by oxidative Pd-C cleavage with inversion

Melissa Sprachman @ Wipf Group

Table 1: Scope of palladium-catalyzed formation of 3-aminotetrahydrofuran derivatives.^[4]

Entry	Alcohol	Substituents	Major product	Product no.	Yield [%] (d.r.)
1	Аr	Ar = Ph (4)	Ar NPhth	4a	77 (10:1)
2	Ar ОН	Ar = <i>p</i> -MeOC ₆ H ₄ (5)	Ar NPhth	5 a	62 (15:1)
3	Аr Аr	Ar = <i>m</i> -MeOC ₆ H ₄ (6)	Ar NPhth	6 a	55 (5.4:1)
4	Ar ОН	$Ar = o \cdot MeOC_6H_4~(7)$	Ar NPhth	7 a	63 (7.8:1)
5	Аr	$Ar = p - CF_3C_6H_4$ (8)		8 a	54 (> 20:1)
6	Аr Аr	$Ar = m - CF_3C_6H_4$ (9)		9 a	60 (16:1)
7	Ar OH	Ar = <i>p</i> -BrC ₆ H ₄ (10)	Ar NPhth	10 a	56 (> 20:1)
8	Аr Аr	Ar=2-naphthyl (11)	Ar NPhth	11 a	80 (12:1)
9	Аг	Ar = mesityl (12)	Ar NPhth	12 a	72 (1.4:1)
10	✓ 13 ^{OH}			13 a	30 (1.4:1)
11	R	R=benzyl (14)	R ^O NPhth	14 a	27 (1.5:1)
12	✓ OH R	R=isopropyl (15)	R NPhth	15 a	< 5
13	, → × _{OH}		NPhth	16 a	47

Decreased diastereoselectivities were observed with substituents in the *meta* and *para* positions

[[]a] Reagents and conditions: 1 equiv phthalimide, 3 equiv PhI (OAc)₂, 3 equiv 3-alken-1-ol, 10 mol% $Pd(OAc)_2$, 20 mol% AgBF₄ in 1.4 mL CH₃CN at 60°C.

Conclusions

-3 aminotetrahydofurans were unexpectedly synthesized in Sanford and coworkers' attempts to suppress the beta-hydride elimination pathway of an aminopalladation/oxidation sequence.

-Evidence from experiments by Stahl and Sanford supports *cis*-aminopalladation of alkenes.

-The promising diastereoselectivities and consequent mechanistic elucidation may lay the framework for the development of enantioselective Pd^{II}/Pd^{IV} reactions.