Iron in the Service of Chromium: The ortho-Benzannulation of trans,trans-Dienyl Fischer Carbene Complexes

Yiqian Lian and William D. Wulff

(Michigan State University)

JACS 2005, 127, 17162-17163.

Markus Furegati Current Literature January 21st 2006

Transition Metal Carbene Complexes

 1964 (E. O. Fischer) – First report of transision metal carbene complexes with Cr, Mo, W. Initially hesitantly introduced into preparative organic chemistry.

recent review: K. H. Dötz et al. Chem. Soc. Rev. 1999, 28, 187.

Mechanism of the Dötz Reaction

The ortho-Benzannulation

Dötz reaction leads to 1,4 relation of the two oxygen atoms. Possibility for 1,2 arrangement? [1]

Why use of UV?

Fischer has shown that the rates of ligand substitution reactions of pentacarbonyl-(methoxymethylcarbene)chromium complex can be increased under UV irradiation, presumably via a photoinduced dissociation of a CO ligand. [2] The dissociation proceeds also thermally (standard Dötz conditions).

[1] W. D. Wulff In *Advances in Metal-Organic Chemistry*; L. S. Liebeskind, Ed.; JAI Press: Greenwich, CT, 1989; Vol 1, p 336. [2] E. O. Fischer, H. Fischer *Chem. Ber.* **1974**, *107*, 657.

Improvements of the ortho-Benzannulation

The large number of natural products that possess *o*-alkoxy-phenol or *o*-quinone type structures argues for the development of chromium carbene based stategies that will provide access to substitution patterns other than para.

C. A. Merlic *et al.* JOC **2001**, *66*, 1297. Path A: a) C. A. Merlic *et al.* JACS **1991**, *113*, 7418. b) C. A. Merlic *et al.* THL **1993**, *34*, 7379. Path B: a) C. A. Merlic *et al.* JACS **1992**, *114*, 8722. b) C. A. Merlic *et al* THL **1993**, *34*, 5401.

ortho-Benzannulation Reaction (Path A)

Path A: a) C. A. Merlic *et al. JACS* **1991**, *113*, 7418. b) C. A. Merlic *et al. THL* **1993**, *34*, 7379. [1] S. Hegedus *et al. JACS* **1990**, *112*, 4364.

Application in the Total Synthesis of Calphostins A-D

Isolated by Tamaoki et al. in 1989 from Cladosporium cladosporioides. Calphostin C in particular is a potent inhibitor of PKC. Key step applied on a model system: Path A (last slide) did not work due to high electron density in aryl ring. [2]

[1] T. Tamaoki *et al. J. Antibiot.* **1989**, *42*, 153 and 1470.
[2] C. A. Merlic *et al. JOC* **2001**, *66*, 1297.

The ortho-Benzannulation of trans, trans-Dienyl Fischer Carbene Complexes I

The *ortho*-benzannulation requires that the α , β -double bond in **1** has a *cis*-disposition of the carbene complex and the second double bond.

- Incorporation in a ring
- Prepared by [4+2] or [2+2] cycloaddition onto the alkyne function of an enynyl carbene complex.

=Cr(CO)₅

W. D. Wulff et al. *JACS* **2005**, *127*, 17162-17163. [1] J. Barluenga *et al. JOC* **2003**, *68*, 537.

The ortho-Benzannulation of trans, trans-Dienyl Fischer Carbene Complexes II

In the course of a control experiment Wulff et al. observed the formation of 5a...

... with the mass of the stirrer rapidly diminishing.

X-ray of **5a**

i adle 1.	Optimization	with	Added	Iron	I rica	rbor	iyi	501	irces	
			0.014			-	~ /		-	_

solvent	CO/Ar	time, h	5a , % yield	7a, % yield
hanzana	CO	144		< 0.5ª
benzene	Ar	144		8
banzana	CO	18	70	8
Delizelle	Ar	28	58	6
hantana	CO	36	68	7
neptane	Ar	20	54	5
тне	CO	36	61	20
1111	Ar	20	50	10
CHCN	CO	17	68	12
citigen	Ar	20	34	8
benzene	CO	48	60	7
	solvent benzene heptane THF CH ₃ CN benzene	solvent CO/Ar benzene CO Ar benzene CO Ar heptane CO Ar THF CO Ar CH ₃ CN CO Ar benzene CO	$\begin{array}{c c} \mbox{solvent} & \mbox{CO/Ar} & \mbox{time, h} \\ \hline \mbox{benzene} & \mbox{CO} & 144 \\ \mbox{Ar} & 144 \\ \mbox{benzene} & \mbox{CO} & 18 \\ \mbox{Ar} & 28 \\ \mbox{heptane} & \mbox{Ar} & 28 \\ \mbox{heptane} & \mbox{Ar} & 20 \\ \mbox{THF} & \mbox{Ar} & 20 \\ \mbox{THF} & \mbox{Ar} & 20 \\ \mbox{CO} & 17 \\ \mbox{Ar} & 20 \\ \mbox{CH}_3 \mbox{CN} & \mbox{Ar} & 20 \\ \mbox{benzene} & \mbox{CO} & 48 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a With 70% recovery of 4a. ^b Benzylideneacetone iron tricarbonyl.

W. D. Wulff et al. JACS 2005, 127, 17162-17163.

Scope of the reaction

Table 2. Iron-Mediated Reactions of Dienyl Fischer Carbene Complexes^a

^{*a*} Unless otherwise specified, all reactions were carried out in THF at 80 °C with 1 equiv of Fe₂(CO)₉ under 1 atm of CO at 0.02 M in 4. ^{*b*} Yields in parentheses are based on unrecovered starting material. ^{*c*} The crude reaction mixture was stirred with silica gel for 2–3 days. ^{*d*} In benzene.

10

W. D. Wulff et al. JACS 2005, 127, 17162-17163.

Possible Mechanism

Related chemistry, thermolysis of diazoester 8: [1]

Solvent	θ° C	Time	10	11	12	
cumene	20°→100°	2 h	45 %	15 %	-	
cumene (CO)	140°	10 min	30-35 %	40-45 %	20-10 %	
mesitylene (CO)	160°	10 min	-	95 %	trace < 2%	

- Loss of Nitrogen and
- formation of a zwitterionic π -allyl complex
- Rotation around the formerly terminal diene C=C bond
- Intramolecular insertion of a CO ligand
- the pseudo cyclic structure cyclizes to an iron π -coordinated cyclohexadienone.

[1] M. Franck-Neumann et al. Synlett 1995, 341.

Summary & Outlook

During three decades metal carbenes have evolved from organometallic curiosities to valuable tools in stereoselective organic synthesis.

Title paper:

The carbonylative cyclization of *trans,trans*-dienyl complexes is not known and has been reported to fail under photochemical conditions.

Easy access to *trans*, *trans*-dienyl Fischer carbenes by aldol reaction.

Mechanistic and further synthetic studies will be reported in due course.