Synthesis of the entire carbon framework of the keracidin chromophore aglycon

Yoshimura, F.; Lear, M. J.; Ohashi, I.; Koyama, Y.; Hirama, M., *Chem Commun* **2007**, 3057 DOI 10.1039/b705932a

Kedarcidin

- Kedarcidin was isolated from fermentations of an actinomycete strain obtained Indian soil in 1991.
- Kedarcidin antitumour antibiotic, cytotoxic 9 membered enediyne chromophore
 - also shows activity against Grampositive bacteria.
- The chromophore component determined by BMS in 1992 based on extensive spectroscopic analysis and degradation studies, complicated by low natural abundance and its high reactivity
- Kedarcidin is composed of an acidic single chain polypeptide (114 residues) and a highly labile enediyne-containing chromophore
 - ASAAVSVSPA TGLADGATVT VSASGFATST SATALQCAIL ADGRGACNVA EFHDFSLSGG EGTTSVVVRR SFTGYVMPDG PEVGAVDCDT APGGCEIVVG GNTEEYENAA ISFE

In-vitro Mechanism of action of Kerdacidin (BMS)

- Bonding between acetylenic carbons (2&7) is 2.85 A
 - Cycloaromatisation not possible as epoxide causes [3.3.0]-type TS
 - too strained
- Epoxide opening by attack at C-12 (2.82 A) allows the cycloaromatosation to now be energetically favourable
 - resulting in diradical
- Diradicals responsible for DNA damage

Questions arising synthesis – revision of structure

Myers's revised structure (2007)

(based on spectroscopic data of total synthesis)

Synthetic Considerations

- High enthalpic and entropic barriers during construction of 9 membered bicyclic core
- Short bench life of strained diyne products (bond angles approx 160 °)
- Can undergo spontaneous Bergmann cycloaromatisation or Cope rearrangements at room temps

- Require late stage installation of 9 membered ring
- Limited number of groups working towards total synthesis (Myers, Hirama, Magnus and Caddick)

Stereoselective Synthesis of Bicyclic Core - Caddick

•Magnus *et al* use similar strategy to access core Lisa Johnstone @ Wipf Group

Ring Contraction Mechanism

Total Synthesis - Myers

- Marcocyclic Transannulation
- Retrosynthetic analysis identified advanced precursor
 - Rare amino sugar –L-kedarosamine
 - Chromophore precursor
- Gram quantity synthesis of advanced intermediate

Synthesis of L-Kedarosamine

Alpha selective glycosidic coupling – glycosyl fluoride most effective
Not stable to chromatography (used crude)
60 % over 3 steps on 1.2 g scale

•Piv group selected to allow mild, fluoride-based deprotection

Shiina macrolactonisation – preformed on gram scale

•Macrocyclisation – modified Eglinton cond.

Product extremely unstable – directly subjected to transannular cyclisation

V directed epoxidation only successful with hindered oxygen sourceConfirmed by nOe expt.

- First total synthesis
 - Intramolecular Songashira coupling (61 %)
 - Two macrolactonisation reactions (66 % and 59 %)
- Corrected overall structure

- CeCl₃/LiN(TMS)₂ mediated cyclisation protocol between C7-C8 to form nine membered diyne core
- Require gram quantities of aldehyde (cyclisation precursor)

Scale up of cyclisation precursor

Large scale production of required fragments

Boc removal by conversion to o-silylcarbamate

Intermediate stubborn to selective deprotection

•Global desilylation, then hydrolysis of acetonide to give tetraol

 Treatment with TBSCl gave triol – selectively protected 2Y C10 OH

 Transannular steric replusion from ansamacrocyclic bridge during protection of C8 1Y OH

3:1 α-OH at C8 β-OH at C8

 Dess-Martin or Swern ox – complex mixtures

- •Oxidative cleavage or chlorination of electron rich
- naphthol unit
- •IBX or SO₃.py reliable methods

•C8 stereochem confirmed by nOe study of corresponding mesylate

•Can also utilise YbCl₃ as an alternative to CeCl₃ to initiate the anionic formation of unstable nine membered cores

Nine membered cyclisation study results

Entry	Additive	Temp	Time (h)	Yield (%)	4a/4b
1	CeCl ₃	-25 to rt	1	<7	2/1
2	CeCl ₂	-15	18	26	3/1
3	CeCl ₃	-25	25	47	3/1
4	CeCl ₃	-50	69	12	3/1
5	None	-25	36	0	-
6	YbCl ₃	-25	36	22	2/3

Outcomes of synthesis

- α stereoselectivity due to repulsion of the ansamacrolide framework
- α isomer not stable at rt (t_{1/2} = 13 h), can be stored in benzene matrix at -30 °C without deterioration

Conclusions

- Constructed multicyclic diyne anasmacrolide possessing the entire framework of kedarcidin
 - Through CeCl₃ mediated anionic formation of unstable 9 membered cores