Nucleophilic Addition to a *p*-Benzyne Derived from an Enediyne: A New Mechanism for Halide Incorporation into Biomolecules

Perrin, C. L.; Rodgers, B. L.; O'Connor, J. M. J. Am. Chem. Soc. 2007, ASAP

$$\frac{X}{X} \xrightarrow{\circ} \frac{X}{X} \xrightarrow{\bullet} \frac{X}{X}$$

John Maciejewski

Current Literature 4/7/07

Halogens in Natural Products

- To date ~4,500 know halogenated natural products
- Halogen incorporation changes physical properties
 - binding affinity and selectivity
- Up to 20% pharmaceuticals on market are halogenated
- Most pharmaceuticals contain fluorine or chlorine where most natural products contain bromine or iodine

Yarnell, A. *Chem. Eng. News* **2006**, *84*, (21), 12 Murphy, C. D. *J. Appl. Microbiol.* **2003**, *94*, 539

Haloperoxidases

- Most halogenase enzymes oxidize halide ions to *electrophilic* species or radical species that react with the target substrate
- Haloperoxidases may use either heme-iron or vanadium cofactors with enzyme to generate hypohalous acid

$$H_2O_2 + X^- + H^+ \xrightarrow{\text{Haloperoxidase}} HOX + H_2O$$
 $HOX + AH \xrightarrow{\text{non-enzymatic}} AX + H_2O$

Yarnell, A. *Chem. Eng. News* **2006**, *84*, (21), 12 van Pee, K.-H.; Patallo, E. P. *Appl. Microbiol. Biotechnol.* **2006**, *70*, 631 Murphy, C. D. *J. Appl. Microbiol.* **2003**, *94*, 53

Perhydrolases

- Perhydrolases catalyze formation of short-chain aliphatic peracids
- Peracids then oxidize halide ions to form hypohalous acids

$$H_2O_2 + CH_3COOH \xrightarrow{\text{Perhydrolase}} CH_3COOOH + H_2O$$
 $CH_3COOOH + X^- \xrightarrow{\text{non-enzymatic}} CH_3COOH + HOX$
 $CH_3COOOH + X^- \xrightarrow{\text{non-enzymatic}} AX + H_2O$

van Pee, K.-H.; Patallo, E. P. Appl. Microbiol. Biotechnol. 2006, 70, 631

First Discovered Haloperoxidase

- First observed by Shaw (1959) while studying biosynthesis of caldariomycin
- Occurs in fungus Caldariomyces fumago
- Chloroperoxidase from *C. fumago* most widely studied halogenase (~42kDa)
- Uses heme-iron as oxidizing cofactor for activation of C-H bonds

Caldariomycin

Sundaramoorthy, M.; Terner, J.; Poulos, T. L. *Chem. Bio.* **1998**, *5*, 461 Shaw, P. D.; Hager, L. P. *J. Biol. Chem.* **1959**, *234*, 2565

Haloperoxidases as Biocatalysts

- -Merck used haloperoxidase to synthesize starting materials for HIV-1 protease inhibitor
- -Biocatalyst used on process scale to produce several kilograms of optically active material

Zhang, J.; Roberge, C.; Reddy, J.; Connors, N.; Chartrain, M, Buckland, B.; Greasham, R. *Enzyme Microb. Technol.* **1999**, *24*, 86

Halogen Incorporation via *p*-Benzyne Pathway

Bergman cyclization

$$\sqrt{\frac{1}{\Delta}}$$

Bergman, R. G. Acc. Chem. Res. 1973, 6, 25

Sequence incorporating an enediyne cyclization (**5**), *nucleophilic* attack of halide onto *p*-benzyne (**6**), then subsequent protonation of sp² arene (**7**) to form **8**

Enediyne Scaffolds in Natural Products

- Natural products calicheamicin and esperamicin contain enediyne trigger
- Abstracts hydrogen atoms from sugar phosphate backbone of DNA

Smith, A. L.; Nicolaou, K. C. *J. Med. Chem.* **1996**, *39*, 2103 Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai, W.-M. *J. Am. Chem. Soc.* **1992**, *114*, 7360

Results of Nucleophilic Attack on Enediyne

Selected ¹H NMR from supporting info.

Reaction monitored by disappearance of olefin peak with respect to internal standard (1,3,5-trimethylbenzene)

Yields >90%

Kinetics of Cyclization

MX	[5] _o /mM	[X ⁻]/mM	[HA]/mM	10 ⁵ k/s ⁻¹	%yield
LiI	75	750	90	1.42	100
LiI^a	4	550	20	1.38	100
LiI	4	55	20	1.31	100
LiI	75	370	90	1.35	98
LiI^b	4	550	20	1.23	55
LiBr	3.8	550	15	1.51	100
LiBr	19	576	20	1.46	100
${ m LiBr}^a$	3.8	550	15	1.56	92
${ m LiBr}^a$	14	584	20	1.30	92
LiBr	24	360	190	1.21	77
LiBr	28	420	84	1.32	71
LiCl	3.8	550	15	1.30	99
LiCla	3.8	550	15	1.59	37
none	15.5	0	0	2.07	0

a + 20% D₂O. b + 50% D₂O.

-d[enediyne]/dt = k[enediyne]

$$k_{\rm avg} = 1.38 \times 10^{-5} \, \rm s^{-1}$$

Rate independent of conc. of acid, halide, or halide used

Proposed Formation of 8

- Formation of weak σ -bond through σ^* -orbital in **12**
- Nucleophilic addition to **12** results into **7** which is then protonated by a proton source (pivalic acid).

Deuterium Incorporation

- Product **8** was deuterium enriched by (X = Cl, Br, l) 67%, 51%, 42%, respectively, by ¹H NMR, including when no D₂O added.
- Deuterium abstraction from DMSO- d_6 (in presence of pivalic acid) supports strong base generated in reaction (7).

Is This an Active Pathway in Nature?

Proposed (partial) mechanism for synthesis of Cyanosporasides **1** and **2**

Asymmetric addition to *p*-benzynes shows little selectivity and may explain the 1:1 (isolated) ratio of Cyanosporasides **1** and **2** (above), along with Sporolides **A** and **B** (below)

A $R^1 = CI R^2 = H$ **B** $R^1 = H R^2 = CI$

Buchanan, G. O.; Williams, P. G.; Feling, R. H.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. *Org. Lett.* **2005**, *7*, 2731

Sporolides **A** and **B**

Conclusion

- A new mechanism whereby halogenation of natural products occurs through *nucleophilic* halogen attack onto the activated substrate has been discussed
- This process may be able to explain the biosynthesis of sporolides and cyanosporasides
- The kinetic data is consistent with a first-order process dependent only on the enediyne
- Experiments are underway to investigate the scope and utility of incorporating nucleophiles onto aromatic systems through this process