Nucleophilic Addition to a p-Benzyne Derived from an Enediyne: A New Mechanism for Halide Incorporation into Biomolecules

Perrin, C. L.; Rodgers, B. L.; O'Connor, J. M. J. Am. Chem. Soc. **2007**, ASAP

John Maciejewski

Current Literature 4/7/07

Halogens in Natural Products

- To date ~4,500 know halogenated natural products
- Halogen incorporation changes physical properties - binding affinity and selectivity
- Up to 20% pharmaceuticals on market are halogenated
- Most pharmaceuticals contain fluorine or chlorine where most natural products contain bromine or iodine

2,6-Dichlorophenol sex-pheromone of lone star tick

 $\rm O_2$ N OH H N $H_O \sim 0$ Cl Cl

Chloramphenicol antibiotic activity

Br H Br Br

Bromoform marine algae

Yarnell, A. Chem. Eng. News **2006**, 84, (21), 12 Murphy, C. D. J. Appl. Microbiol. **2003**, 94, 539

Haloperoxidases

- Most halogenase enzymes oxidize halide ions to *electrophilic* species or radical species that react with the target substrate
- Haloperoxidases may use either heme-iron or vanadium cofactors with enzyme to generate hypohalous acid

 H_2O_2 + X^- + H^+ Haloperoxidase H_2O_2 + H_2O $HOX + AH$ non-enzymatic AX + H₂O O O $\frac{\mathsf{N}}{\mathsf{N}}$ N L-V-OH V Fe^{34} ^N ^N O Heme-iron cofactor Vanadium cofactor

Yarnell, A. Chem. Eng. News **2006**, 84, (21), 12 van Pee, K.-H.; Patallo, E. P. Appl. Microbiol. Biotechnol. **2006**, 70, 631 Murphy, C. D. J. Appl. Microbiol. **2003**, 94, 53

Perhydrolases

- Perhydrolases catalyze formation of short-chain aliphatic peracids
- Peracids then oxidize halide ions to form hypohalous acids

van Pee, K.-H.; Patallo, E. P. Appl. Microbiol. Biotechnol. **2006**, 70, 631

First Discovered Haloperoxidase

- First observed by Shaw (1959) while studying biosynthesis of caldariomycin
- Occurs in fungus Caldariomyces fumago
- Chloroperoxidase from *C. fumago* most widely studied halogenase $(\sim42 \text{kDa})$
- Uses heme-iron as oxidizing cofactor for activation of C-H bonds

Caldariomycin

Sundaramoorthy, M.; Terner, J.; Poulos, T. L. Chem. Bio. **1998**, 5, 461 Shaw, P. D.; Hager, L. P. J. Biol. Chem. **1959**, 234, 2565

Haloperoxidases as Biocatalysts

- -Merck used haloperoxidase to synthesize starting materials for HIV-1 protease inhibitor
- -Biocatalyst used on process scale to produce several kilograms of optically active material

Zhang, J.; Roberge, C.; Reddy, J.; Connors, N.; Chartrain, M, Buckland, B.; Greasham, R. Enzyme Microb. Technol. **1999**, 24, 86

Halogen Incorporation via p-Benzyne Pathway

Bergman cyclization

Bergman, R. G. Acc. Chem. Res. **1973**, 6, 25

Sequence incorporating an enediyne cyclization (**5**), nucleophilic attack of halide onto p-benzyne (**6**), then subsequent protonation of sp2 arene (**7**) to form **8**

Enediyne Scaffolds in Natural Products

- Natural products calicheamicin and esperamicin contain enediyne trigger
- Abstracts hydrogen atoms from sugar phosphate backbone of DNA

Smith, A. L.; Nicolaou, K. C. J. Med. Chem. **1996**, 39, 2103 Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai, W.-M. J. Am. Chem. Soc. **1992**, 114, 7360

Results of Nucleophilic Attack on Enediyne

Kinetics of Cyclization

^{*a*} + 20% D₂O. ^{*b*} + 50% D₂O.

-d[enediyne]/ $dt = k$ [enediyne]

 $k_{\mathrm{avg}}^{}=1.38$ x 10⁻⁵ s⁻¹

Rate independent of conc. of acid, halide, or halide used

Proposed Formation of **8**

- Formation of weak σ-bond through σ*-orbital in **12**
- Nucleophilic addition to **12** results into **7** which is then protonated by a proton source (pivalic acid).

Deuterium Incorporation

- Product 8 was deuterium enriched by $(X = CI, Br, I)$ 67%, 51%, 42%, respectively, by ¹H NMR, including when no D_2O added.
- Deuterium abstraction from DMSO- d_6 (in presence of pivalic acid) supports strong base generated in reaction (**7**).

Is This an Active Pathway in Nature?

Proposed (partial) mechanism for synthesis of Cyanosporasides **1** and **2**

Asymmetric addition to p -benzynes shows little selectivity and may explain the 1:1 (isolated) ratio of Cyanosporasides **1** and **2** (above), along with Sporolides **A** and **B** (below) HО

Buchanan, G. O.; Williams, P. G.; Feling, R. H.; Kauffman, C. A.; Sporolides A and B Jensen, P. R.; Fenical, W. Org. Lett. **2005**, ⁷, 2731

Conclusion

- A new mechanism whereby halogenation of natural products occurs through *nucleophilic* halogen attack onto the activated substrate has been discussed
- This process may be able to explain the biosynthesis of sporolides and cyanosporasides
- The kinetic data is consistent with a first-order process dependent only on the enediyne
- Experiments are underway to investigate the scope and utility of incorporating nucleophiles onto aromatic systems through this process