Highly Diastereoselective Asymmetric Mannich Reactions of 1,3-Dicarbonyls with Acyl Imines

$$X \xrightarrow{Q} Y + R_1Q \xrightarrow{Q} N \xrightarrow{Catalyst} CH_2Cl_2 \xrightarrow{CH_2Cl_2} X \xrightarrow{Q} R_2$$

Amal Ting, Sha Lou, and Scott E. Schaus *Org. Lett.*, **2006**, *8*, 2003-2006

Presented by:
John Maciejewski
July 1, 2006

General Mannich Reaction

Multi-component mixture

Asymmetric Mannich

Modest diastereoselectivity with good enantioselectivities

Reviews on Asymmetric Mannich reactions:

Risch Angew. Chem., Int. Ed. 1998, 37, 1044 - 1070

Dalko Angew. Chem., Int. Ed. 2004, 43, 5138 - 5175

Asymmetric Nucleophilic Addition to Imines

- Selective addition to pro-chiral face of imine continues to be studied extensively
- Chiral Proline derivatives have been used to invoke enantioselective addition to imines
- Other nucleophiles (ex. β-keto esters, β-diketones) require source of chirality for asymmetric addition to imines

Importance of asymmetric Mannich Reactions

- Ability to form quaternary carbon stereocenters
- Form valuable enantioenriched synthons
- Organocatalytic

Selected organocatalytic examples:

(S)-Proline - Parrish *J. Org. Chem.*, **1974**, *39*, 1615 - 1621

Modified prolines - Barbas J. Am. Chem. Soc., 2006, 128, 1040-1041

Cinchona alkaloids - Schaus J. Am. Chem. Soc., 2005, 127, 11256-11257

Organometallic Catalytic

Shibasaki - Tet. Lett. 1999, 40, 307-310

Mannich Reactions

Applications of asymmetric synthesis

 α -Amination

Barbas Org. Lett., 2005, 7, 3885-3888

Compounds used to treat neurodegenerative diseases

Organocatalysis on ketimines

Jørgensen Angew. Chem., Int. Ed., 2004, 43, 4476-4478

Used L-proline -derived catalysts to obtain selectivity

Mannich Reactions

Applications of asymmetric synthesis

PMP N H CO₂Et
$$\frac{\text{Me}^{"}}{\text{N}}$$
 N H $\frac{3}{2}$ CO₂Et $\frac{3}{2}$ CO₂Et $\frac{1}{2}$ CO₂Et $\frac{1}{$

Barbas J. Am. Chem. Soc., 2006, 128, 1040-1041

Syn-pathway

Anti-pathway

Mannich Reaction Using Chiral Lewis Bases

$$R_1$$
 + R_3 O N $Catalyst$ R_1 O $Catalyst$ R_1 O $Catalyst$ $Catalyst$ R_1 O $Catalyst$ $Catalyst$

Modest diastereoselectivity with good enantioselectivities

Schaus J. Am. Chem. Soc., 2005, 127, 11256-11257

(DHQD)₂PYR

Poulsen Angew. Chem., Int. Ed. 2005, 44, 2896 - 2899

Used modified cinchona alkaloid as organocatalyst in Mannich reaction

Mannich Reactions Using Cinchona Alkaloids

Improved selectivity in cyclic systems

$$X = CH_2, Y = OCH_3$$
 $R_1 = CH_3, CH_2CH=CH_2$ $R_2 = Ar$, $(E)-CH=CH_2Ar$ $R_2 = Ar$, $(E)-CH=CH_2Ar$ $R_3 = CH_3$ $R_4 = CH_3$ $R_5 = Ar$, $(E)-CH=CH_2Ar$ $R_5 = Ar$, $(E)-CH=CH_2Ar$ $R_7 = CH_3$ $R_7 = CH_3$

Expanded scope to cyclic 1,3-dicarbonyl compounds

- Improved isolated yields
- Observed improved diastereo- and enantioselectivity
- Demonstrates potential for applications in organic synthesis

Screening of Chiral Lewis Bases

entry	catalyst	yield $(\%)^b$	$\det_{(\%)^c}$	ee (%) ^c
1	cinchonine 1	96	93	90
2	cinchonidine ${f 2}$	96	94	-88
3	quinidine ${f 3}$	96	95	18
4	dihydroquinidine 4	94	94	88
5	quinine 5	95	94	-10

Cinchona alkaloids were screened in asymmetric Mannich reaction

- Afford products in high yield and in high diastereo- and enantiomeric excess

Substrate Scope Using Cinchonine (1)

Addition of β -keto esters, β -keto lactones, and β -diketones to benzylidene carbamates

6a:
$$X = CH_2$$
, $Y = OCH_3$

7

The second of the second

6b: $X = CH_2$, $Y = OCH_2CH_3$ **8a-b**: $R_1 = allyl$

6c: $X = CH_2$, $Y = CH_3$

6d: $X = O, Y = CH_3$

Cinchonine was established to be an effective catalyst for asymmetric synthesis

cinchonine 1

Substrate Scope Using Cinchonine (1)

Addition of β -keto esters, β -keto lactones, and β -diketones to aryl-propenyl acyl imines

6b: $X = CH_2$, $Y = OCH_2CH_3$

6c: $X = CH_2$, $Y = CH_3$

6d: $X = O, Y = CH_3$

cinchonine 1

Transition States

Using molecular modeling* to probe origin of selectivity in Cinchona-catalyzed Mannich reactions

$$R^2$$
 R^1
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^2
 R^1
 R^2

H H O

Imine approaches *re*-face of Cinchona-bound enolate

si-Face of enolate partially blocked by quinoline moiety

P. Dalko Angew. Chem., Int. Ed., 2004, 43, 5138 - 5175

*Calculations performed using MMFF (Merck Molecular Force Field) to determine lowest-energy conformer of enol (above).

Summary & Next Directions

- Cinchona alkaloids catalyze Mannich reactions to form highly diastereo- and enantioenriched products
- Using organocatalysts to facilitate highly diastereo- and enantioselective addition will continue to make this versatile reaction attractive
- Apply this methodology towards six-membered ring-containing β -keto esters and β -diketones