Stereospecific and Stereodivergent Construction of Quaternary Carbon Centers through Switchable Directed/Nondirected Allylic Substitution

Bernhard Breit*, Peter Demel, Christopher Studte

Institut für Organische Chemie und Biochemie Albert-Ludwigs-Universität Freiburg, Germany

Angewandte Chemie International Edition, 2004 Early View Communication

Quaternary Carbon Centers

1. Ionic constructions which may involve the participation of the tertiary carbon atom as a nucleophilic or as an electrophilic reaction partner

2. Oxidative and reductive coupling reactions

3. Rearrangement reactions

4. Cycloaddition reactions

Tetrahedron, 1980, 36, 419

Asymmetric Creation of Quaternary Carbon Centers

- 1. Enantioselective Creation (one chiral center was generated in product)
 - A. Enantiodifferentiating Reactions (0 to 1)
 - 1. Chemical Methods
 - 2. Biological Methods
 - **B.** Diastereodifferentiating Reactions (2 to 1)
 - 1. Use of Chiral Nucleofuges
 - 2. Intramolecular Chiral transfer Reactions
 - 3. Miscellaneous Reactions
- 2. Diastereoselective Creation (two chiral centers were generated in product)
 - A. Enantiodifferentiating Reactions (0 to 2)
 - **B.** Diastereodifferentiating Reactions (1 to 2)
 - 1. Alkylation of Chiral Enamines
 - 2. Alkylation of Chiral Enolates and relater Carbanions
 - 3. D-A Cycloadditions
 - 4. Micellaneous Reactions

Chem. Rev., 1993, 93, 2037

Intramolecular 1, 3-Chiral transfer Reactions

[2, 3]-Sigmatropic Rearrangement

$$R_1$$
 R_2 R_2 R_3 R_2 R_1 R_2 R_3 R_2 R_3 R_4

[3, 3]-Sigmatropic Rearrangement

S_N2' Reaction

Chem. Rev., 1986, 86, 885

Carb. Res., 2000, 328, 37

Org. Lett., 2003, 5, 2111

S_N2' Intramolecular 1, 3-Chiral transfer Reactions

Advantage:

- 1. Allows the introduction of variable nucleophiles, such as alkyl, alkenyl and aryl groups into an existing carbon skeleton.
- 2. The reactions generally proceed by *anti* attack of the nucleophile with respect to the leaving group.

Disadvantage:

- 1. Simultaneous control of the chemo-, regio- and stereo-chemistry is normally difficult.
- 2. The stereochemistry of the product was determined by the stereochemistry of the starting material.
- 3. Usually, excess of organometallic reagent is required to push the reaction to complete.

Reagent-directing leaving groups -syn attack

Carbamates as the leaving groups

J. Org. Chem., 1983, 48, 715

Benzothiazole as the leaving group

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

J. Org. Chem., 1990, 55, 2295

o-DPPB as the leaving group (DPPB = diphenylphosphanylbenzoate)

Switchable Directed/Nondirected Leaving Group

Scheme 1. Concept of stereodivergent allylic substitution with organocopper reagents for the stereospecific construction of quaternary carbon centers by employing a switchable directing/nondirecting leaving group.

ACEI, 2004, Early View Communication

o-DPPB-directed Allylic Substitution

Table 1: Regioselective formation of quaternary carbon centers through o-DPPB-directed allylic substitution. [a]

Entry	o-DPPB ester ^[b]		RMgX (equiv)	Product		S _N 2'/S _N 2 ^[c]	Yield [%]
1	(o-DPPB)O Mc Me Me	1	MeMgI (1.1)	Me Me Me Me	2	> 99:1	68 ^[c]
2	(o-DPPB)O Mc Me Me	1	nBuMgBr (1.1)	Me Me Me	3	99:1	99
3	Me Me O(o-DPPB)	(E)-4	MeMgI (1.2)	Me Me Me	5	95:5	91
4	Me Me O(o-DPPB)	(E)-4	EtMgBr (1.2)	Me Et Me	6	> 98:2	80
5	Me Me Me	(Z)-4	EtMgBr (1.2)	Me Et Me	6	> 98:2	95
6	Me Me O(υ-DPPB)	(E)-4	nBuMgBr (1.2)	Me nBu Me	7	> 99:1	87

[a] Reactions were performed in diethyl ether, $c(o\text{-DPPB ester}) = 0.05 \,\text{M}$. The Grignard reagent (0.51–1.23 M in diethyl ether) was added to the reaction mixture with a syringe pump over a period of 30 min. [b] Prepared from the corresponding allylic alcohol by an esterification protocol reported previously. [9] [c] Determined by GC (CPSiI5CB, 30 m, 0.32 mm ID, Chrompack). [d] Yield of isolated product after distillation (entry 1) or chromatographic purification (entries 2–6). [e] The low yield is due to the volatility of the product.

Directed/Nondirected Allylic Substitution

directed syn substitution

PPh,

O Me CuBr SMe₂ (0.5 cquiv)

RMg X/El₂O (1.2 equiv)

PGO Reg TBDMS

Reg CH₂OPMB

(-)-8a: PG = TBDMS

Reg CH₂OPMB

(-)-8b: PG = TBDPS

Reg CO₂Et

only (-)-8b

H₂O₂ | quant.

O Me TBDPSO

CO₂Et

(-)-11

CO₂Et

THF, -30
$$\rightarrow$$
 0°C

2.5 h

(+)-9g-i

Scheme 2. Stereospecific and stereodivergent construction of quaternary carbon centers through the switchable directed/nondirected allylic substitution of the acyclic substrates (–)-8a/b and (–)-11 (see Table 2). PG = protecting group, PMB = p-methoxybenzyl, TBDMS = tert-butyldimethylsilyl, TBDPS = tert-butyldiphenylsilyl.

Table 2: Stereospecific and stereodivergent formation of quaternary carbon centers: acyclic substrates. [a]

Entry	Substrate ^[b] (ee [%])	R ²	S _N 2'/ S _N 2 ^[c]	$E/Z^{[c]}$	Product (ee [%]) ^[c]	CT ^[d]	Yield ^{le}
1	8a (94)	Me	> 95:5	>95:5	9 a		
2	8a (94)	Et	> 99:1	>99:1		-	72
3	8a (93)	nBu	> 99:1	> 99:1	(-)-9b (94)	100	86
4	8a (93)	iPr	> 99:1	>99:1	(-)-9c (93)	100	99
511	8a (93)	Bn	> 99:1	>99:1	(-)-9d (93)	100	89
5	8 a (92)	tBu	14:86 ^[g]	80:20 ^[g]	(-)-9e (85)	91	53
7	8b (>99)	Et	> 99:1	> 99:1	9 f (n.d. [11])	n.d.[h]	90
3	8b (>99)	nBu	> 99:1		(-)-9g (98)	98	84
)	8b (>99)	iPr	>99:1	>99:1	(-)-9h (97)	98	87
0	11 (>99)	Et	> 99:1	>99:1	(-)-9i (97)	98	84
1	11 (>99)	nBu		>99:1	(+)-9g(99)	100	85
219	11 (>99)		> 98:2	>98:2	(+)-9h (99)	100	87
_	11 (-33)	iPr	97:3 ^[g]	> 95:5	(+)-9i (>99)	100	94

[a] All reactions were performed in diethyl ether, $c(o\text{-}DPPB\ ester)=0.05\ M$. The Grignard reagent (0.76–1.23 M in diethyl ether) was added to the reaction mixture with a syringe pump over a period of 15–20 min. [b] Prepared from the corresponding allylic alcohol^[12] by an esterification protocol reported previously. The enantiomeric excess was determined by HPLC analysis of the corresponding allylic alcohol (Chiralpak AD (8a), Chiralcel OD-H (8b)). [c] Determined by HNMR spectroscopy (entry 1) or HPLC analysis (entries 2, 3, 5, 7, 9: Chiralcel OD-H; entry 4: Chiralpak AD after removal of the TBDMS group; entries 9, 12: Chiralcel OD-H after removal of the TBDPS group). [d] The chirality transfer (CT) was calculated as CT = $(ee(9)/ee(8\ or\ 11)) \times 100$. [e] Yield of isolated product after chromatographic purification. [f] $c(8a) = 0.01\ M$ in diethyl ether; the Grignard reagent (0.07 M in diethyl ether) was added over a period of 90 min. [g] Product ratios were determined by HNMR spectroscopy. [h] n.d. = not determined. [i] With 1-methyl-2-pyrrolidinone (NMP) as a cosolvent (one third of the total solvent volume).

Application of Switchable Directed/Nondirected Substitution in Sixmembered-ring System

Scheme 3. Stereospecific and stereodivergent construction of quaternary carbon centers through the switchable directed/nondirected allylic substitution of the cyclic substrates (-)-12a/b and (-)-13a/b (see Table 3).

Table 3: Stereospecific and stereodivergent formation of quaternary carbon centers: cyclic substrates.

Entry	Substrate ^[a] (ee [%])	R	$S_N 2' / S_N 2^{[b]}$	Product (ee [%]) ^[b]	CT ^[c]	Yield ^{ld} [%]
] [e]	12a (97)	Me	99:1	(+)-14a (96)	99	> 95
2 ^[e]	12a (97)	nBu	>99:1	(+)-14b (96)	99	> 95
3 ^[e]	12a (97)	iPr	98:2	(-)-14c (96)	99	> 95
4 ^[e]	12a (97)	Ph	40:60	(+)-14d (92)	95	>95
519	13 a (94)	Et	96:4	(-)-14a (91)	97	> 95
611	13 a (94)	nBu	98:2	(+)-15a (94)	100	>95
7[1]	13 a (94)	iPr	96:4	(-)-15b (91)	97	>95
8 ^[7]	13 a (94)	Ph	41:59	(+)-15c (82)	87	>95
9isl	12b (97)	Me	99:1	(-)-14a (93)	96	> 95
10 ^[g]	12b (97)	nBu	>99:1	(-)-14b (96)	99	>95
11 g	12b (97)	iPr	97:3	(+)-14c (94)	97	>95
12 8	13 b (94)	Et	>99:1	(+)-14a (93)	99	>95
13 ^[g]	13 b (94)	nBu	99:1	(-)-15a (94)	100	>95
14[8]	13 b (94)	iPr	99:1	(+)-15b (93)	99	>95

[a] Prepared from the corresponding allylic alcohol following an esterification protocol reported previously. [9] The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H (12a), Chiralcel OD-H (13a)). [b] Determined by ¹H NMR spectroscopy and GC analysis (Supelco Beta Dex 110 (14a,14d,15c), C.E.I. G-TA (14b,14c,15a,15b)). [c] The chirality transfer (CT) was calculated as CT = (ee(14)/ee(12)) x 100. [d] Yield was determined by GC. [e] The Cu-complexed o-DPPB esters were added in diethyl ether/dichloromethane (95:5, c = 0.01 m) to the Grignard reagent (0.05 m in diethyl ether) by using a syringe pump (6 mLh⁻¹). [f] As for [e], but diethyl ether/dichloromethane (4:1, c = 0.01 m). [g] The oxidized o-DPPB esters (c = 0.07 m in THF) were added to the zinc-copper reagents (c = 1.00 m in THF) at a rate of 12 mLh⁻¹.

Conclusion

- 1. The o-DPPB/o-DPPB oxide system can be used as a switchable directing/nondirecting leaving group in a copper-mediated allylic substitution reactions.
- 2. Both enantiomers of the substitution product are readily available from one enantiomer of the substrate.
- 3. The chemo-, regio- and stereoselectivity are quite good.
- 4. Large excess of organometallic reagents is NOT necessary.
- 5. The switchable leaving groups are reusable.