Current Literature Jingbo Xiao

 June 5th, 2004

Stereospecific and Stereodivergent Construction of Quaternary Carbon Centers through Switchable Directed/Nondirected Allylic Substitution

Bernhard Breit*****, Peter Demel, Christopher Studte

Institut für Organische Chemie und Biochemie Albert-Ludwigs-Universität Freiburg, Germany

> Angewandte Chemie International Edition, 2004 Early View Communication

Quaternary Carbon Centers

1. Ionic constructions which may involve the participation of the tertiary carbon atom as a nucleophilic or as an electrophilic reaction partner

2. Oxidative and reductive coupling reactions

3. Rearrangement reactions

4. Cycloaddition reactions

Tetrahedron, **1980**, *36*, 419

Current Literature Jingbo Xiao

 June 5th, 2004

Asymmetric Creation of Quaternary Carbon Centers

1. Enantioselective Creation (one chiral center was generated in product)

A. Enantiodifferentiating Reactions (0 to 1)

- **1. Chemical Methods**
- **2. Biological Methods**
- **B. Diastereodifferentiating Reactions (2 to 1)**
	- **1. Use of Chiral Nucleofuges**
	- **2. Intramolecular Chiral transfer Reactions**
	- **3. Miscellaneous Reactions**

2. Diastereoselective Creation (two chiral centers were generated in product)

A.Enantiodifferentiating Reactions (0 to 2)

B. Diastereodifferentiating Reactions (1 to 2)

- **1. Alkylation of Chiral Enamines**
- **2. Alkylation of Chiral Enolates and relater Carbanions**
- **3. D-A Cycloadditions**
- **4. Micellaneous Reactions**

Chem. Rev., **1993**, *93*, 2037

Intramolecular 1, 3-Chiral transfer Reactions

S_N2' Intramolecular 1, 3-Chiral transfer Reactions

Advantage:

- **1. Allows the introduction of variable nucleophiles, such as alkyl, alkenyl and aryl groups into an existing carbon skeleton.**
- **2. The reactions generally proceed by** *anti* **attack of the nucleophile with respect to the leaving group.**

Disadvantage:

- **1. Simultaneous control of the chemo-, regio- and stereo-chemistry is normally difficult.**
- **2. The stereochemistry of the product was determined by the stereochemistry of the starting material.**
- **3. Usually, excess of organometallic reagent is required to push the reaction to complete.**

Current Literature *Current Literature Current Literature Jingbo Xiao*

 June 5th, 2004

Reagent-directing leaving groups -*syn* **attack**

Carbamates as the leaving groups

J. Org. Chem., **1983**, *48*, 715

Benzothiazole as the leaving group

J. Org. Chem., **1990**, *55*, 2295

*o***-DPPB as the leaving group (DPPB = diphenylphosphanylbenzoate)**

Adv. Synth. Catal., **2001**, *343*, 5

Switchable Directed/Nondirected Leaving Group

Scheme 1. Concept of stereodivergent allylic substitution with organocopper reagents for the stereospecific construction of quaternary carbon centers by employing a switchable directing/nondirecting leavir g group.

ACEI, **2004**, Early View Communication

 $Table 10.221 \times 10^{-4} \times 1$

o-DPPB-directed Allylic Substitution

rable 1: Regioselective formation of quaternary carbon centers through o-DPPB-directed allylic substitution. ^[4] CuBr·SMe ₂ (0.5 equiv) $(O-DPPB)O$ Me R Me RMgX (1.1-1.2 equiv) El ₂ O, RT										
Entry	o-DPPB ester ^[b]		RMgX (equiv)	Product		$S_N 2'/S_N 2^{[c]}$	Yield [%] ^[d]			
	(o-DPPB)O Mc Me. Me Me	1	MeMgI (1.1)	Me Me Me Me Me	$\overline{2}$	>99:1	$68^{[r]}$			
$\overline{2}$	$(O-DPPB)O$ Mc Me. Me Me	T	n BuMgBr (1.1)	Me Me Me. Me. Me	3	99:1	99			
$\overline{3}$	Me ₂ $O(o-DPPB)$ Me Me	$(E) - 4$	MeMgI (1.2)	Me. Me Me Me	5	95:5	91			
$\overline{4}$	Me. $O(O-DPPB)$ Me. Me $O(o-DPPB)$	$(E) - 4$	EtMgBr (1.2)	Me. Et Me Me	6	>98:2	80			
5	Me_{\sim} Me Me	$(Z) - 4$	EtMgBr(1.2)	Me. Et-Me Me	ϵ	>98:2	95			
66	M_2 $O(o-DPPB)$ Me Me	$(E) - 4$	n BuMgBr (1.2)	Me. nBu Me Me	7	>99:1	87			

[a] Reactions were performed in diethyl ether, c(o-DPPB ester) = 0.05 M. The Grignard reagent (0.51-1.23 M in diethyl ether) was added to the reaction mixture with a syringe pump over a period of 30 min. [b] Prepared from the corresponding allylic alcohol by an esterification protocol reported previously.^[9] [c] Determined by GC (CPSil5CB, 30 m, 0.32 mm ID, Chrompack). [d] Yield of isolated product after distillation (entry 1) or chromatographic purification (entries 2-6). [e] The low yield is due to the volatility of the product.

 $\overline{}$

Directed/Nondirected Allylic Substitution

Table 2: Stereospecific and stereodivergent formation of quaternary carbon centers: acyclic substrates.[a]

Scheme 2. Stereospecific and stereodivergent construction of quater-
nary carbon centers through the contribution of quaternary carbon centers through the switchable directed/nondirected allylic
substitution of the acyclic cubates substitution of the acyclic substrates $(-)$ -8 a/b and $(-)$ -11 (see Table 2). $PG =$ protecting group, $PMB = p$ -methoxybenzyl,
TRDMS = tasks + U. TBDMS = tert-butyldimethylsilyl, TBDPS = tert-butyldiphenylsilyl.

[a] All reactions were performed in diethyl ether, $c(o\text{-DPPB ester}) = 0.05 \text{ m}$. The Grignard reagent (0.76–1.23 M in diethyl ether, c (o-DPPB ester) = 0.05 M. The
with a syringe pump over a position of M and M and M and M attending the with with a syringe pump over a period of 15–20 min. [b] Prepared from the
corresponding allylic alcohol^[12] by an orthology and the line or the corresponding allylic alcohol¹¹² by an esterification protocol reported previously.^(a)
The enantiomeric excess was determined by UDLG The enantiomeric excess was determined by HPLC analysis of the corresponding
allylic alcohol (Chiralnak AD (8.) Chiral Lines analysis of the corresponding allylic alcohol (Chiralpak AD (8a), Chiralcel OD-H (8b)). [c] Determined by
¹H NMR spectroscopy (entry 1) as UDLG (8b). [c] Determined by ¹H NMR spectroscopy (entry 1) or HPLC analysis (entries 2, 3, 5, 7, 9:
Chiralcel OD-H: entry 4: Chiralpok AD -0. Chiralcel OD-H; entry 4: Chiralpak AD after removal of the TBDMS group;
entries 9, 12: Chiralcel OD-H after removal of the TBDMS group; entries 9, 12: Chiralcel OD-H after removal of the TBDMS group;
transfer (CT) was calculated as CT_T (cd) (cd) 1. (c) and complete the chirality transfer (CT) was calculated as $CT = (ee(9)/ee(8 \text{ or } 11)) \times 100$. [e] Yield of isolated
product after chromatographic purification $E = (ee(9)/ee(8 \text{ or } 11)) \times 100$. [e] Yield of isolated product after chromatographic purification. [f] $c(8a) = 0.01$ M in diethyl ether; the
Grignard reagent (0.07 M in diethyl ether) was also had the share of the state of Grignard reagent (0.07 m) in diethyl ether; the
[g] Product ratios were determined by was added over a period of 90 min. [g] Product ratios were determined by ¹H NMR spectroscopy. [h] n.d. and determined. [i] With 1-methyl-2 pyrroliding and (MLD) determined. [i] With 1-methyl-2-pyrrolidinone (NMP) as a cosolvent (one third of
the total solvent volume) the total solvent volume).

Application of Switchable Directed/Nondirected Substitution in Sixmembered-ring System

Scheme 3. Stereospecific and stereodivergent construction of quaternary carbon centers through the switchable directed/nondirected allylic substitution of the cyclic substrates $(-)$ -12a/b and $(-)$ -13a/b (see Table 3).

Table 3: Stereospecific and stereodivergent formation of quaternary carbon centers: cyclic substrates.

Entry	Substrate ^[a] (ee [%])	R	$S_{N}2^{7}/S_{N}2^{ b }$	Product $(ee [%)]^{ b }$	CT ^[c] [%]	Yield ^[d] [%]
1 ^[e]	12a(97)	Me	99:1	$(+)$ -14a (96)	99	> 95
7 ^[e]	12a(97)	nBu	>99:1	$(+) - 14b(96)$	99	> 95
3 e	12a(97)	iPr	98:2	$(-) - 14c(96)$	99	> 95
$4^{ e }$	12a(97)	Ph	40:60	$(+) - 14d(92)$	95	> 95
5 ^[f]	13a(94)	Et	96:4	$(-)$ -14a (91)	97	>95
6^{11}	13a(94)	nBu	98:2	$(+)$ -15a (94)	100	> 95
7^{11}	13a(94)	iPr	96:4	$(-) - 15b(91)$	97	> 95
$g^{[r]}$	13a(94)	Ph	41:59	$(+) - 15c(82)$	87	> 95
gis	12b(97)	Me	99:1	$(-)$ -14a (93)	96	> 95
10^{8}	12b(97)	nBu	>99:1	$(-) - 14b(96)$	99	> 95
11^{g}	12b(97)	iPr	97:3	$(+) - 14c(94)$	97	> 95
12^{8}	13b(94)	Et	>99:1	$(+)$ -14a (93)	99	> 95
$13^{[g]}$	13b(94)	nBu	99:1	$(-)$ -15a (94)	100	> 95
14^{8}	13b(94)	iPr	99:1	$(+) - 15b(93)$	99	> 95

[a] Prepared from the corresponding allylic alcohol following an esterification protocol reported previously.^[9] The enantiomeric excess was determined by HPLC analysis (Chiralpak AD-H (12a), Chiralcel OD-H (13a)). [b] Determined by ¹H NMR spectroscopy and GC analysis (Supelco Beta Dex 110 (14a, 14d, 15c), C.E.I. G-TA (14b, 14c, 15a, 15b)). [c] The chirality transfer (CT) was calculated as $CT = (ee(14)/ee(12)) \times$ 100. [d] Yield was determined by GC. [e] The Cu-complexed o-DPPB esters were added in diethyl ether/dichloromethane (95:5, $c = 0.01$ M) to the Grignard reagent (0.05 M in diethyl ether) by using a syringe pump (6 mLh⁻¹). [f] As for [e], but diethyl ether/dichloromethane (4:1, $c =$ 0.01 m). [g] The oxidized o -DPPB esters $(c=0.07$ m in THF) were added to the zinc-copper reagents $(c=1.00 \text{ m in THF})$ at a rate of 12 mLh⁻¹.

Current Literature Jingbo Xiao

 June 5th, 2004

Conclusion

- **1. The o-DPPB/o-DPPB oxide system can be used as a switchable directing/nondirecting leaving group in a copper-mediated allylic substitution reactions.**
- **2. Both enantiomers of the substitution product are readily available from one enantiomer of the substrate.**
- **3. The chemo-, regio- and stereoselectivity are quite good.**
- **4. Large excess of organometallic reagents is NOT necessary.**
- **5. The switchable leaving groups are reusable.**