One-Pot Synthesis of Nitrogen Heterocycles Initiated by Regioand Diastereoselective Carbon-Carbon Bond Formation of Bifunctional Carbonyl Compounds Ikuya Shibata, Hirofumi Kato, Nobuaki Kanazawa, Makoto Yasuda, and Akio Baba * Department of Molecular Chemistry, Science and Technology Center for Atom, Molecules and Ions Control (STAMIC), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan J. Am. Chem. Soc., ASAP Article ## **Tin-Oxygen Bond** #### **Allylic Stannanes add to Aldehdes:** #### Allenic Stannanes add to Aldehydes: $$R_1$$ R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_4 R_5 #### **Propargylic Stannanes add to Aldehydes:** ## **Nucleophilicity of Tin-Oxygen Bond** $$R \downarrow O \downarrow H \longrightarrow R \downarrow O - Sn \downarrow$$ - 1. L.A. can't be used because the stability of compound 1 - 2. Tributyltin system does't work without the help of L.A. - 3. Allylic chloro-dibutyltin system works well with high chemoselectivity ## **One-Pot Synthesis of 2-Oxazolidinones** R1 CHO $$\frac{Sn}{2}$$, HMPA $\frac{R^2N=C=O}{O^{\circ}C, 1 \text{ h}}$ $\frac{R^2$ | entry | R^1 | \mathbb{R}^2 | Sn (2) | Product and yield/ % | |-------|---|----------------|----------------|--------------------------------------| | 1 | n-C ₈ H ₁₇ | Ph | $Bu_3Sn(2a)$ | No reaction | | 2 | | | $Bu_2ClSn(2b)$ | 4a 99% ^b | | 3 | | | 2 b | 3a 81% (trans: cis = 91 : 9) | | 4 | p-ClC ₆ H ₄ (1b) | Ts | 2b | 3b 54% (trans: cis = 100 : 1) | ^a**1**, 1mmol; **2**, 1 mmol; HMPA, 1 mmol; R²NCO, 1mmol; THF, 1mL. ^b Without HMPA # The trans Selectivity $$R^2$$ R^2 # **The Application of Crotyltin Reagents** ## Generated Allylictins A as Nucleophiles Bu₂SnCl₂ HMPA R²N=C=O THF, 60 °C, 3 h 0 °C, 1 h 60 °C, 0.5 h R²-N O R¹= $$n$$ -C₈H₁₇ (1a) R²= Ts 5a 62% (ds = 100%) R¹= n -C₈H₁₇ (1a) R²= n -C₄H₉ 5b 75% (ds = 100%) R¹= p -ClC₆H₄ (1b) R²= Ts 5c 70% (ds = 100%) # Mechanism of Generated Allylictins A as Nucleophiles #### **Generated Allylictins B as Nucleophiles** 9 # Mechanism of Generated Allylictins B as Nucleophiles # **Conclusion** A one-pot synthesis of nitrogen heterocyclic compounds was initiated by chemoselective allylation. Regio- and diastereoselective carbon-carbon bond formation was established in the side chain of the rings.