Unified, Radical-Based Approach for the Synthesis of Spiroketals

$$CI \xrightarrow{O} Xa$$
 $Xa = SC(S)OEt$

OH
O
OH
O
M
R²

n,
$$\underline{m} = 0, 1, 2$$

$$R^{1}$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

Jennifer Davoren Current Literature 4/7/2007

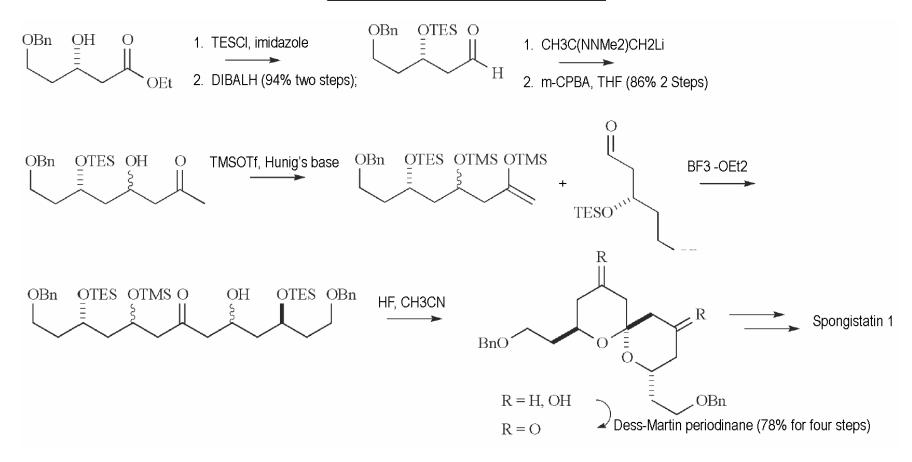
De Greef, M.; Zard, S. Z. Org. Lett. 2007, 9, 1773-1776.

Commonly Used Strategies for Spiroketal Formation

Mead, K. T.; Brewer, B. N. Curr. Org. Chem. 2003, 7, 227-256

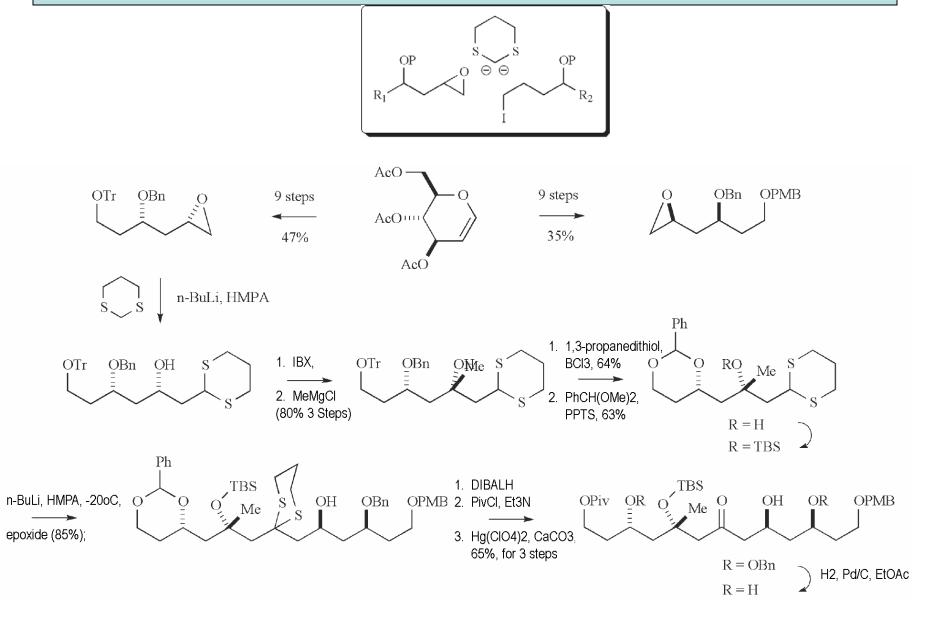
Nucleophilic Attack unto the Spiroketal Carbonyl

Drouet, K. E.; Ling, T.; Tran, H. V.; Theodorakis, E. A. Org. Lett. 2000, 2, 207-210.


Alpha alkylation of the Spiroketal Carbonyl

$$\begin{array}{|c|c|c|c|c|c|}
\hline
OP & OP & O & I & OP \\
R_1 & & & & & \\
\hline
R_2 & & & & & \\
\hline
\end{array}$$

Panek, J. S.; Jain, N. F. J. Org. Chem. 2001, 66, 2747-2756.


Aldol Reaction Using the Spiroketal Carbonyl as an Enolate

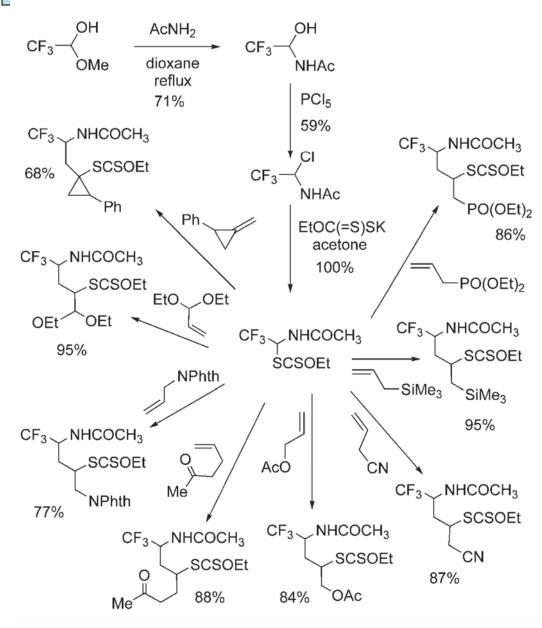
$$\begin{array}{|c|c|c|c|c|c|}
\hline
OP & O & O & OP \\
\hline
R_1 & & & R_2
\end{array}$$

Claffey, M. M.; Hayes, C. J.; Heathcock, C. H. J. Org. Chem. 1999, 64, 8267-8274.

Use of Dithiane as an Acyl Anion Equivalent

Terauchi, T.; Nakata, M. *Tetrahedron Lett.* **1998**, 39, 3795-3798.

Radical Addition of Xanthates to Olefins


Xanthates are the salts and of xanthic acid. esters a ROC(=S)SH or O-esters dithiocarbonic acid where R is any organic residue. The ethyl ester $CH_3CH_2OC(=S)SH$ is also the parent compound xanthic acid. Many xanthates have a yellow color, which gives the compound its name derived from xanthous, meaning yellow- Wikipedia

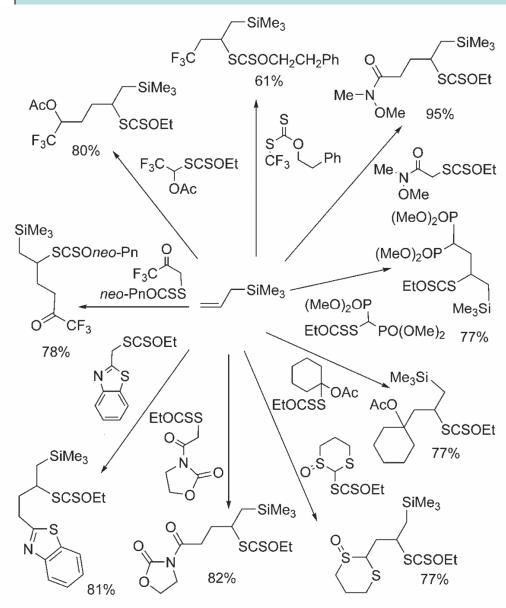
Reaction Manifold for the Addition of Xanthates to Olefins

The Xanthate group exerts a powerful regulating influence on the concentration of the various radicals in the medium, scavenging reactive radicals and releasing stabilized radicals

Quiclet-Sire, B.; Zard, S. Z. Chem. Eur. J. 2006, 12, 6002-6016.

Formation of α -Trifluoromethyl Amines

Radical Cleavage


$$R = H_3C N_H^{CF_3}$$

Conditions:

lauroyl peroxide (2-10 mol%), CICH₂CH₂CI, reflux

Gagosz, F.; Zard, S. Z. Org. Lett. 2003, 5, 2655-2657

Radical Additions to Allyl Trimethylsilane

- Reagents are cheap, stable, and readily available
- Convergent and atom economical process
- No heavy metals are involved
- Can be run under high concentrations
- DCE is the most commonly used solvent, but water can also be used
- Peroxides are the most commonly used initiators
- Tolerance of a wide variety of functional groups

Selective Formation of Homodimers

Gagosz, F.; Zard, S. Z. *Org. Lett.* **2003**, *5*, 2655-2657 Alajarin, M.; Vidal, A.; Ortin, M.-M. *Org. Biomol. Chem.* **2003**, *1*, 4282-4292.

Mechanism for the Formation of Homodimers

Synthetic Route to Spiroketals

De Greef, M.; Zard, S. Z. Org. Lett. 2007, 9, 1773-1776.

Additions of Chloroketone Xanthate

entry	olefin ≫OAc	Product	yield (%) (52%)	
a		O Xa Xa Xa		
b	OAc	O OAc	(80%)	
c	OAc Me	O OAc Xa Xa Me	(80%) dr = 1:1	
d	OTBS t-Bu	O OTBS t-Bu Xa Xa	(54%) dr = 1:3	
e	OTBS	O OTBS	(72%)	

Formation of Spiroketals

entry	di-xanthate	olefin	15a-i yield (%) ^a	16a-i yield (%)	17 a-i yield (%) ⁵
a	8b	4	OAC O OAC Me 15a (88%)	OAC O OAC 16a (79%)	OO (71%)
b	8b	OAC Ph	$ \begin{array}{cccc} \text{OAc} & \text{O} & \text{OAc} \\ \text{Xa} & \text{Xa} \end{array} $ $ \begin{array}{cccc} \text{OAc} & \text{15b} \\ \text{Xa} & \text{(70\%)} \end{array} $	OR O OAC 16 b^{c} (R=Ac, 60%) + 16 b^{t} (R=H, 25%)	OO (75%)
c	8b	OAC 10	$\bigvee_{Xa}^{OAc}\bigvee_{Xa}^{O}\bigvee_{Xa}^{OAc}\bigvee_{A}^{Ph} \begin{array}{c} \mathbf{15c}\\ (82\%) \end{array}$	OAc O OAc Ph 16c ^c (R=Ac, 75%) + 16c' (R=H, 15%)	$ \begin{array}{c} $
d	8b	OAc 11	$ \begin{array}{ccccc} \text{OAc} & \text{O} & \text{OAc} & & \mathbf{15d} \\ & & & & & \\ Xa & & & & \\ Xa & & & & \\ \end{array} $	OAc O OAc 16d (76%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
e	8b	OAc OAc 12	OAc O OAc 15e (78%)	OAc O OAc 16e (84%)	ОО (72%)
f	8c	OAc 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OAc O 16f OAc (58%)	(75%)
g	8c	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17g (68%)
h	8a	12	$\begin{array}{c c} & O & OAc \\ & AcO & AcO \\ & Xa & Xa \end{array}$	Aco O OAc OAc 16h (57%)	ОО (92%)
i	8d	OEt 14	OTBS O OEt 15i $t-Bu \xrightarrow{Xa} Xa Xa Xa$	orbs o OEt $16i^{\circ}$ OEt (85%)	EtO t-Bu 17i ^{f,g} (57%)

Synthesis of a Xanthate Containing Spiroketal

O OTBS
$$n$$
-Bu₃SnH, AIBN, heptane, reflux O OTBS A cetone, 0 °C O OTBS A cetone, 0 °C O OTBS A cetone, 0 °C O OTBS O

Modification of the Xanthate Group

Me +
$$\frac{1}{4}$$
 Me $\frac{1}{4}$ Me

Conclusions

- A novel route to dihydroxy ketones and hence to spiroketals, which takes advantage of the xanthate transfer reaction
- Synthesis is modular and tolerant of many of the functional groups commonly encountered in modern synthesis
- Allows the concise assembly of spiroketals with various combinations of ring sizes
- Yields are generally good