Magnesium Iodide Promoted Ring Expansion of Secondary

Methylenecyclopropyl Amides

$$\begin{array}{c}
 & O \\
 & O \\$$

Mark Lautens

University of Toronto

Jennifer Davoren * 11/25/06 * Current Literature

Methylenecyclopropane Derivatives

- Hypoglycine is a naturally derived amino acid unripe fruit of the ackee tree Blighia sapida
 - Responsible for Jamaican vomiting sickness
- Methylenecyclopropylglycine was isolated from the kernels of litchi fruits
 - Causes hypoglycemia in mice and fasted rats
- Methylenecyclopropane is a stable volatile olefin (bp 11 °C), can be stored in a sealed tube for several years without decomposition

Synthesis of Methylenecyclopropane Derivatives

Carbene Additions to Allenes

The formation of spiropentane derivatives is general and cannot normally be avoided, especially in simple monosubstituted allenes, even when using only a slight excess of the Simmons-Smith reagent

Eliminations

Synthesis of Methylenecyclopropane Derivatives

Elimination of N₂ from Pyrazolines

Wittig Olefinations

The route employing cyclopropylidene phosphorane has been the most utilized by researchers, because of the unavailability of cyclopropanone and the low reactivity of its synthetic equivalent cyclopropanone hemiacetal

[3 + 2] Cycloaddition of Dipolar Trimethylenemethane (TMM) Derived From Methylenecyclopropanes


J. Org. Chem. 1998, 63, 1694-1703

Carriera's Precedence

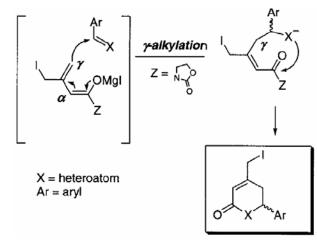
$$R^{2}$$
 R^{2}
 R^{2

Angew. Chem., Int. Ed. 1999, 38, 3186

Lauten's Early Work

- Studies began with the reactions of several monoactivated MCP's of types **1a-1c** with aryl aldimines in the presence of stoichiometric MgI₂
 - Reactions using ester 1a and stoichiometric Mgl₂ recovered starting material
 - Whereas amides 1b and 1c gave complex mixtures even in the reactions with aryl aldehydes
 - In contrast the diphenyl amide 1d could be reacted with a variety of imines in good yields

Reactions of MCP Amides: Bearing a Diphenyl Amide


entry	3	Χ	Υ	time (h)	6	yield (%)	d.r. (trans:cis)
1	a	NTs	4-CF ₃	10	a	65	1.6:1
2	b	NTs	$4-NO_2$	6	b	57	2.2:1
3	c	NTs	4-Br	10	c	85	2.3:1
4	d	NTs	4-OMe	6	d	78	5.3:1
5	e	NBs	H	6	e	81	4.1:1
6	e	NBs	Н	15	e	76	3.8:1
7	f	NTs	2-Br	6	f	71	>20:1
8	g	NTs	2-CF ₃	10	g	81	>20:1
9	h	NTs	2,4-dichloro	10	h	78	>20:1
10	i	NTs	2,4-dimethyl	10	i	82	>20:1

α-alkylation/cyclization

- In the case of aldimines bearing an *ortho*-substituent (entries 7-10) only the *trans* diastereomers were obtained.
- Stoichiometric Mgl₂ is not required, the reactions could be carried out with 10-30 mol % of Mgl₂ without any loss in yield (entries 3, 6, and 8-10).
- When 10 mol % Mgl₂ was used, an increase in the reaction concentration to 0.2 M was required to ensure complete reaction (entry 6).
- Reactions with aryl iodides provided complex mixtures of products

Reactions of MCP Imides: Bearing a Oxazolidinone

entry	3	Χ	Υ	method	7	Nuc	yield (%)
1	c	NTs	4-Br	A	c	N_3	78
2	c	NTs	4-Br	В	c	I	60
3	j	NTs	Н	A	j	N_3	81
4	g	NTs	2-CF ₃	В	g	Ts	75
5	i	NTs	2,4-dimethyl	A	i	OAc	72
6	\mathbf{k}	O	Н	A	\mathbf{k}	N_3	88
7	l	O	2-Br	A	l	SPh	67
8	m	O	$4-NO_2$	В	m	OAc	71
9	n	O	$3,4\text{-}OCH_2O$	A	n	Ts	65
10	0	O	2,4-dichloro	В	0	N_3	74

- In contrast to the results with the diphenyl amide, the products were exclusively six-membered heterocycles bearing an allyl iodide and lacking the oxazolidone group
 - Requires a stoichiometric amount of Mgl₂ to go to completion
 - The iodo-substituted products were not stable to silica flash chromatography
 - A concerted [4+2] *hetero* Diels-Alder reaction pathway could not be ruled out

Reactions of MCP Amides: Bearing a Secondary Amide

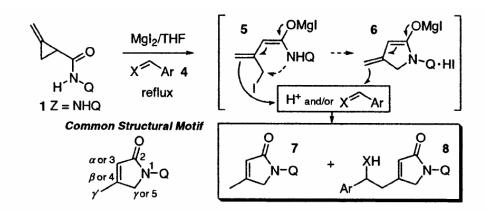
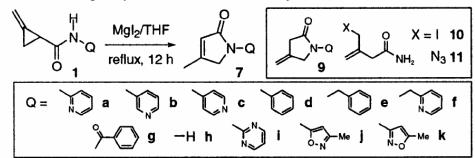



Table 1. Ring Expansion of Secondary MCP Amides

entry	1	product	yield (%)	entry	1	product	yield (%)
1	a	7a	89	5	e	7e	d
2	b	7 b	95	6	f	$7\mathbf{f}$	d
3	c	7 c	87	7	g	7g	d
4	d	7 d	80	8	h	11	67

- A different process for secondary
 MCP amides was observed
- In the absence of an electrophile underwent ring expansion to the isomeric five-membered unsaturated lactam 7
- In the presence of a wide range of aryl aldimines or aldehydes products such as **8** were obtained

J. Am. Chem. Soc. 2003, 125, 4028.

Reactions of MCP Amides: Bearing a Secondary Amide

Table 2. Alkylative Ring Expansion of MCP 1a (Q = Pyrid-2-yl)

entry	4	Χ	Υ	equiv of Mgl ₂	[1] (M)	8	yield ^a (%)
1	a	NTs	4-Br	1.1	0.05	aa	45
2	a	NTs	4-Br	1.1	0.1	aa	53
3	b	NTs	2,4-dimethyl	1.1	0.05	ab	54
4	b	NTs	2,4-dimethyl	1.1	0.1	ab	68
5	c	NTs	4-OMe	1.1	0.1	ac	71
6	d	NTs	H	1.1	0.1	ad	72
7	e	NTs	2-CF ₃	1.1	0.1	ae	76
8	\mathbf{f}	O	H	1.1	0.1	af	62
9	g	O	3,4-OCH ₂ O	1.1	0.1	ag	72
10	h	O	4-CF ₃	1.1	0.1	ah	81

In each case, the monoalkylated product **7** was isolated in 10-30% yield

$$Q = \bigcap_{N} a \bigcap_{N} b \bigcap_{N} c \bigcap_{N} d \bigcap_{M \in J} e \bigcap_{N \to M \in K} f$$

$$\Rightarrow Q = \bigcap_{N} a \bigcap_{N} b \bigcap_{N \to M \in K} d \bigcap_{N \to M \in K} e \bigcap_{N \to M \in K} f$$

Diastereoselective Ring Expansion of MCP

Table 1. Aromatic Sulfinimine Scope for Diastereoselective MCP Amide Ring Expansion

entry	R	time (h)	yield (%)	$dr^a (2R,3R)/(2S,3S)$	anti/syn ^a
1	Н	3.25	90	>20:1	>20:1
2	2-Br	6.5	63	>20:1	>20:1
3	3-Br	7.5	72	>20:1	>20:1
4	4-Br	7.5	80	>20:1	>20:1
5	4-MeO	7.0	76	>20:1	>20:1
6	$4-NO_2$	4.5	72	>20:1	>20:1
7	2-Me	6.0	65	>20:1	>20:1
8	4-Me	7.0	85	>20:1	>20:1
9	$4-CF_3$	4.0	94	>20:1	>20:1

Org. Lett. 2004, 6, 3309

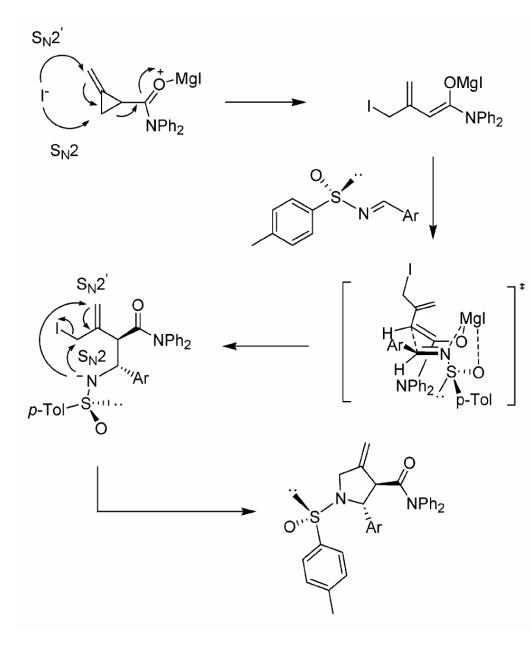

Diastereoselective Ring Expansion of MCP

Table 2. Hetereoaromatic Sulfinimine Scope for Diastereoselective MCP Amide Ring Expansion

entry	Ar	time (h)	yield (%)	dr (2 <i>R</i> ,3 <i>R</i>)/(2 <i>S</i> ,3 <i>S</i>)	anti/syn
1	3-pyridyl	16	82	>20:1	>20:1
2	4-pyridyl	3.25	76	>20:1	>20:1
3	2-furyl	11	82	>20:1	1.1:1
4	3-furyl	3.25	85	>20:1	84:16

- For the pyridyl series (entries 1-2), the diastereoselectivity was found to be excellent in all cases.
- •In the furyl series, however, the diastereoselectivity decreased when the oxygen was ortho to the imine substituent

Proposed Mechanism of Diastereoselective MCP Ring Expansion

- The enolate must attack the sulfinimine via a boat TS to give the observed anti relationship
- The sulfoxide adopts a conformation in this boat transition state to minimize 1,3allylic strain while maximizing the stabilization of this intermediate via coordination of the magnesium to the oxygen of the sulfoxide.
- Presumably the presence of an *ortho* heteroatom in the sulfinimine results in low diastereoselectivity due to competing coordination of magnesium to the *ortho* heteroatom
- The pyrrolidine products could be deprotected in 94% using TFA

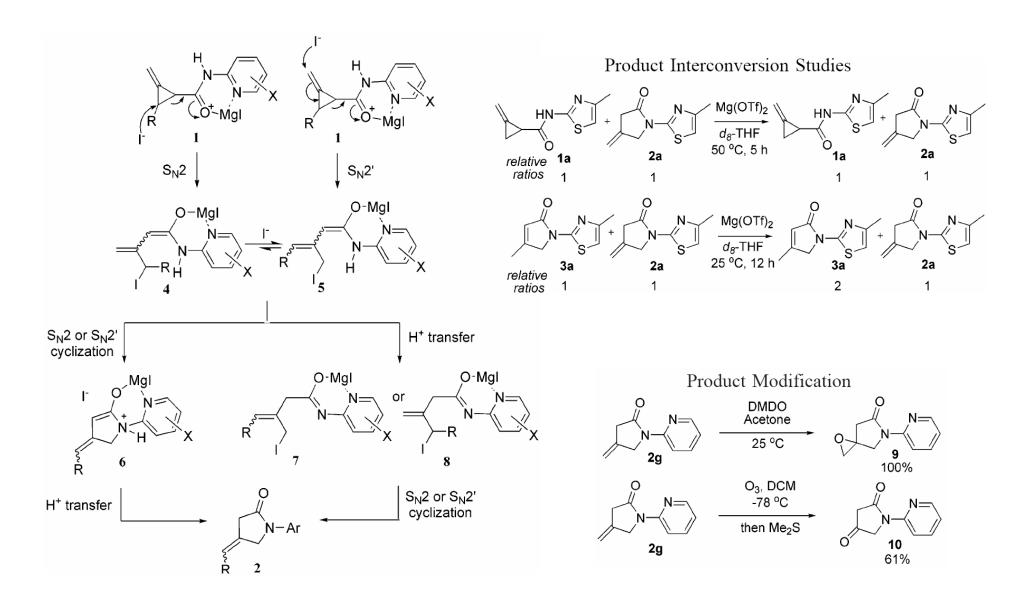
Synthesis of β , γ -Unsaturated Lactams via a MgI₂ Promoted Ring Expansion of Secondary MCP Amides

Table 1. Effect of Catalyst Loading and Concentration on Reaction Selectivity and Yield

$ m MgI_2$ loading (equiv)	$ \begin{array}{c} \text{concentration} \\ \text{(M)} \end{array}$	yield (%)	2a:3a ratio
1.0	0.10	75	1:6.3
0.5	0.10	53	1:2.0
0.2	0.10	49	1:1.3
0.2	0.05	91	> 10:1
0.2	0.02	96	>20:1
0.2	0.005	98	>20:1

- Initial investigations established that THF and Mgl₂ were optimal as both solvent and Lewis acid
- The use of dilute reaction conditions and substoichiometric amounts of Mgl₂ were crucial to obtaining the exo isomer in excellent yield and selectivity

Org. Lett. 2006, 8, 5521


Scope of MgI₂ Promoted Ring Expansion of Secondary MCP Amides

16

1	HN−Ar ——	0.2 equiv	→	N-Ar	
	1 0	50 °C		2	
entry	MC	CP	time (h)	yield ^a (%)	exo:endo ratio ^b
1	-\{\s\)	1a	12	98	>20:1
2	-\$) 1b	12	92	>20:1
3		p-Tol N 1c	60	79 (90)°	>20:1
4	-tr	1d	24	trace	-
5	-ξ-\\ N=	N _{1e}	4	93	17:83
6	-§-\\\	- N 1f	12	81 ^d	9:1
7	-ξ-\N=) 1g	12	93	9:1
8		1 h	2.5	92	3:1
9	-ξ-\\ N=	 	7	99	>20:1
10	-ξ-\\ -ξ-\\	NO_2	4	100	1:3
11	-{}-	OMe	34	55°	3:1

- Several substituted azoles (1-3) afforded the corresponding ring-expanded products in excellent yield and selectivity
- The use of an analogous isoxazole substrate bearing an oxygen adjacent to the amido functionality resulted in no observable ring expansion (4)
 - This result suggests that a nitrogen atom adjacent to the amido functionality is crucial to obtaining the desired exo product in good selectivity and yield
- Mild electron withdrawing groups and electron rich groups gave ring expanded products in excellent yields and selectivities
 - Conversely electron withdrawing groups gave poor exo-selectivities (5 & 10)
- Interestingly, MCPs substituted at either the exo methylene or cyclopropyl carbon also provided ringexpanded products in moderate to good yields with high selectivities of the exo product

Proposed Mechanism of Mgl₂ Promoted Ring Expansion

Conclusions

- Mgl₂ promoted ring expansion of MCP's to either 5 or 6 membered rings
- Unique mechanistic pathways observed depending on the type of amide used; ie. diphenyl amides vs. secondary amides vs. oxazolidinones

18

Diastereoselective variant was developed using the diphenyl amide