Dirhodium(II)Tetra (N-(dodecylbenzenesulfonyl)prolinate) Catalyzed Enantioselective Cyclopropenation of Alkynes

Huw M.L.Davies and Gene H.Lee Org.Lett, **2004**, *6*, 1233

Outline:

- Introduction
- Cyclopropenes in Nature
- Formation of Cyclopropenes
- Cyclopropene Transformations
- Davies' Early Work
- Title Paper
- Conclusions

Introduction

Cyclopropene

The highly strained alkene presents a reactive substrate capable of useful transformations such as:

- Diels-Alder
- Grignard Additions
- Vinyl Carbene Formation

Cyclopropene Acetal

- First described in literature in 1959
- In the mid 1980's, Boger began to incorporate this functionality into several total syntheses of natural products
- Nakamura and others have contributed to a growing body of work concerning methodology and synthetic potential

Cyclopropenes in Nature

Sterculic Acid (inhibitor of Δ9-desaturase)

Tet.Lett, 1992, 33, 1521

Steroid isolated from Calyx Podatypa Sponge

J.A.C.S. **1988**, *110*, 8123

Cyclopropene Transformations

Enantioselective Hydroboration

Gevorgyan, J.A.C.S. 2003, 125, 7198

Iron Catalyzed Olefin Carbometalation

Nakamura, J.A.C.S. 2000, 122,978

Copper Catalyzed Addition of Grignards

Fox, J.A.C.S. 2002, 124, 14322

Cyclopropene Transformations (cont.)

Diels-Alder

Boger, J.A.C.S. 2000, 122, 12169

Vinyl Carbene Formation

Boger, J.A.C.S. 1995, 117, 12452

Formation of Cyclopropenes

Basic Conditions

Baird, Tetrahedron, 2002, 58, 1581

Photochemically

Cyclopropenone Acetal Formation

Nakamura, J.O.C. 1989, 54, 4727

Cyclopropenation of Alkynes by Diazocompounds

Dailey, J.O.C. **1991**, *56*, 2258

$$R = R$$
 $R = R$
 R

The enantioselective cyclopropenation of alkynes is still at a relatively early stage In development. The scope of potential substrates is still being investigated.

Early Work by Davies

 Asymmetric cyclopropanations with α-hydroxy ester chiral auxiliaries

J.A.C.S. 1993, 115, 9468

$$Rh_2L_4$$
 Rh_2L_4
 Rh_3
 Rh_3
 Rh_3
 Rh_3
 Rh_3
 Rh_3

 Catalytic asymmetric solid phase cyclopropanation

J.A.C.S. 2001, 123, 2695

 Rhodium catalyzed asymmetric cyclopropanations

Org.Let, 2000, 6, 823

$$Rh_2(S-DOSP)_4$$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$
 $Rh_2(S-DOSP)_4$

Title Paper:

Goals:

- Cyclopropenate alkynes with aryl diazoacetates (a more stabilized carbenoid than diazoacetates)
- Enantioselectively form a new quartenary center

Reaction Conditions:

$$Rh_{2}(S-DOSP)_{4} = Rh_{2}(S-DOSP)_{4}$$

$$Rh_{2}(S-DOSP)_{4} = Rh_{2}(S-DOSP)_{4} = Rh_{2}(S-DOSP)_{4}$$

- 1 mol% of the rhodium catalyst and 10 eq of alkyne were stirred at r.t. in hexanes.
 The diazo compound was added over the course of 5 hours
- Formation of Diazo Compounds (ex.)

Scope of Alkynes

Table 1. Rh₂(S-DOSP)₄-Catalyzed Enantioselective Cylopropenation with Methyl Phenyldiazoacetate^a

N ₂	R====	4 00 11-
CO₂Me	1 mol% Rh ₂ (S-DOSP) ₄ R	CO ₂ Me
	hexane, 23 °C	

entry	R	product	yield, %	ee, %
1	€ A	2	62	90
2	Br	3	63	92
3	MeO	4	67	86
4		5	60	96
5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	48	87
6	C Y	7	74	92
7	(CH ₂) ₃ CH ₃	8	51	84

- Cyclopropenation occurs prior to C-H bond insertion
- Cyclopropenation occurs prior to cyclopropanation
- Cyclopropenation occurs with hexyne with a small drop in ee and yield

[&]quot;Reac Epikar Enghands (a Miph Group o compound (1.0 mmol) in 5 mL of hexanes over a 5-h period to a solution of the alkyne (10.0 mmol) and catalyst (0.01 mmol) in 10 mL of hexanes. See the Supporting Information for details.

Scope of Diazo Acetates

Table 2. Rh₂(S-DOSP)₄-Catalyzed Enantioselective Cylopropenation of Phenylacetylene with Various Aryl- and Vinyldiazoacetates¹²

entry	R ^a	product	yield (%)	ee (%)
	J.	2	62	90
2	Br V	10	62	86
3	MeO	11	24 ^b	66 ^b
4	The state of the s	12	55	86
5	√S v4	13	57	88
6		14	o	-

- Moderate yield and ee's
- P-methoxy derivative gave the lowest yield (potentially due to reduced reactivity of carbenoid)
- Styryl diazoacetate gave no reaction (possibly due to an unstable product?)

Kinetic Studies

- The most reactive substrates are the most electron rich
 - This is indicative of a positive charge buildup at the benzylic carbon at the transition state
- This is a similar result as the results from the kinetic studies of cyclopropanation

Mechanistic Studies

Figure 1. Comparison of side-on⁷ and end-on¹⁴ approaches for cyclopropenation.

- In 1996, the cyclopropanation of alkenes were proposed to go through the side-on trajectory. If the cyclopropenation of alkynes also went through a side-on trajectory, it should be possible to cylopropenate internal alkynes
 - This was tested with 1-phenyl-1-propyne.
 There was no observed reaction
 - When Doyle tested this alkyne with the diazo acetate he reported 39% yield and 16%ee

Diazo acetates are classified as "unstabilized carbenoids" (they lack the donor and acceptor groups that the aryl diazoacetates have). This leads to greater reactivity

Tetrahedron, 2000, 56, 4880

Davies' Conclusions

- Rhodium Catalyzed cyclopropenation can act as an efficient catalyst for both cyclopropenations and cyclopropanations
- Aryl diazoacetates can react enantioselectively in the presence of the rhodium catalyst to provide cyclopropenes containing a quartenary center
- This work expands the range of chiral cyclopropenes that can be used as synthetic building blocks

- Since the work by Boger in the 1980's, there has been an increase in attention to the potential of cyclopropenes and cyclopropenone acetals in synthesis
- As of recently, cyclopropenone acetals have been the more common cyclopropene variant used in synthesis
- With the work of Davies and others, the variety of chiral cyclopropenes is expanding. With the greater variety, the potential for synthetic applications is also increasing