## Rising Stars Of Synthesis: The Post-doctoral work of Scott A. Snyder

J. Am. Chem. Soc. 2006, 128, 740

Tetrahedron Lett. 2006, 47, 2083



dolabellatrienone



 $\beta$ -araneosene



palominol

#### Scott A. Snyder

-B. S. Williams College, Summa Cum Laude

-Ph. D. The Scripps Research Institute, under K. C. Nicolaou

-Postdoc- Harvard University, under E. J. Corey

-Author on more than 30 papers, patents and books, including Classics II.

-As a Ph. D. describes more than six new bond constructions developed, along with two syntheses of Diazonamide A.

-Junior faculty at Columbia in Fall, 2006.



## The Dolabellane diterpenoids

-Dolabellanes are produced principally by mollusks, coelenterates and brown algae.

- The biological activity of the bolabellanes includes cytotoxicity, antibacterial, antifungal, antiviral, antimalarial, molluscicidal, ichthyotoxic, and phytotoxicity,
- -The first dolabellane isolated was  $\beta$ -aranesone (1975).

-Now, more than 140 compounds have been isolated with this structure.

-They are characterized by the [9.3.0] nucleus, which is on the biosynthetic pathway to the fusicoccanes, dolastanes, and neodolabellanes.







β-araneosene



David Waller @ White Crown

dolastane

neodolabellane

4/7/2006

# Biological Activity of the Dolabellanes

|             | Table 1. Biological     | Properties of N      | aturally Occurring Dolabellane Diterpenes.                           |           |
|-------------|-------------------------|----------------------|----------------------------------------------------------------------|-----------|
| Struct. No. | Source                  | Collection Site      | Biological Activity F                                                | Reference |
| 15,16       | Aplysia dactylomela     | Canary Islands       | antimicrobial activity (Gram-positive and Gram-negative bacteria)    | • 6,7     |
| 22,23       | Clavularia viridis      | Japan                | cytotoxic (P388 leukemia cells) and ichthyotoxic activity            | 16-18     |
| 24          | Clavularia viridis      | Japan                | inhibits cell division in fertilized sea urchin eggs                 | 18        |
| 25          | Clavularia viridis      | Xisha Islands, China | inhibits K+ induced contractions of blood aortic strips              | 20        |
| 27-29       | Clavularia viridis      | Xisha Islands, China | Ca+2 channel blocker in isolated smooth rabbit muscles               | 21        |
| 28          | Clavularia viridis      | Xisha Islands, China | 50% negative inotropic activity and 43.7% bradycardia activity,      |           |
|             |                         |                      | decreases blood pressure of rats                                     | 21        |
| 27-29,33    | Clavularia viridis      | Xisha Islands, China | cytotoxic (Ehrlich ascites carcinoma cells)                          | 21        |
| 36,37,42    | Eunicea laciniata       | Puerto Rico          | weakly cytotoxic (HCT 116 cells)                                     | 28-30     |
| 37          | Eunicea laciniata       | Puerto Rico          | antimicrobial activity (Gram-negative bacteria)                      | 28-30     |
| 43-46       | Eunicea laciniata       | Puerto Rico          | weakly cytotoxic (HeLa cells)                                        | 28-30     |
| 52          | Dictyota dichotoma      | Sicily, Italy        | cytotoxic and in vivo antiviral activity (influenza and adenoviruses | s) 35     |
| 52-55       | Dictyota dichotoma      | Sicily, Italy        | antimicrobial activity (Gram-positive and Gram-negative hacteria)    | 35        |
| 57          | Dictyota dichotoma      | Sicily, Italy        | cytotoxic (KB cells)                                                 | 36        |
| 58,62,63    | Dictyota sp.            | Sicily, Italy        | antimicrobial activity                                               | 38        |
| 83-86       | Dictyota dichotoma      | Cádiz, Spain         | cytotoxic (P-388 mouse lymphoma, A-549 human lung carcinoma          | 4         |
|             |                         |                      | HT-29 human colon carcinoma, MEL-28 human melanoma cells)            | 45        |
| 88          | Dictyota pardalis       | Australia            | weak but specific antimalarial activity                              | 49        |
| 106-108     | Dilophus fasciola       | Yugoslavia           | ichthyotoxic, phytotoxic                                             | 55        |
| 112-114     | Odontoschisma denudatum | Japan                | growth-inhibitory activity on a series of plant pathogenic fungi     | 60        |
| 123-140     | Chrozophora obliqua     | Egypt                | hypoglycemic activity*                                               | 64,65     |

\* The biological activity described is actually that of the crude extract and not of the purified isolates. David Waller @ Wipf Group 4

## Preparation of dolabellanes



### Preparation of dolabellanes (cont.)



David Waller @ Wipf Group

Table 1. Me<sub>2</sub>AISCH<sub>2</sub>CH<sub>2</sub>SAIMe<sub>2</sub>-Induced Dithiane Formation<sup>a</sup>



 $^a$  With 3 equiv of sulfide reagent at 60  $^{\circ}\mathrm{C}$  in 1,2-dichloroethane for 2–12

#### Generality of Dithiolane Formation

- -Reagent introduced in 1973 by Corey for protection of lactones and lactams.
- -Relatively general reaction for ketones and aldehydes.
- -Non-tethered sulfides undergo transesterification to generate thioesters from esters.

AIMe<sub>3</sub>

`SH

HS

h

Me<sub>2</sub>Al S AlMe<sub>2</sub>

## Diels-Alder Cycloaddition Under Oxazaborolidinium Catalysis



# Ring Contraction via Wolff Rearrangement



### **IBX-Mediated Dehydrogenation of Silyl Enol Ethers**



Angew. Chem. Int. Ed. **2002**, 41, 993 Angew. Chem. Int. Ed. **2002**, 41, 996 4/7/2006

David Waller @ Wipf Group

In Summary...

-The preparation of some interesting diterpenoids.

-Development of some new methodology including a Wolff-based ring contraction.

-A little of an interesting career sure to be with us during ours.

