Enantioselective Friedel-Crafts Alkylations Catalyzed by Bis(oxazolinyl)pyridine – Scandium(III) Triflate Complexes

by David A. Evans, Keith R. Fandrick, Hyun-Ji Song, Karl A. Scheidt, and Risheng Xu.

JACS ASAP Article, 2007.

Current Literature: 7/28/07: David Arnold

Background: Asymmetric Friedel-Crafts Alkylation and Scandium Catalysis

$$R^3$$
 R^2
 R^3
 R^2
 R^3
 R^4
 R^4

99% yield, >99:1 dr, 83% ee

Angew. Chem. Int. Ed. **2001**, *40*, 160-163.

• Tetrahedron 2001, 57, 10203.

Outline

- Initial Substrate Study
- Optimization and Reaction Scope
- Product Elaboration
- Crystal Structures
- Mechanistic Considerations
- Conclusion

Initial Substrate Screen and Optimization of the Friedel-Crafts Reaction using α,β -Unsaturated Acyl Phosphonates

catalyst	conversion (%)	% ee ^b
1a	99	98
1b	99	-77
1c	99	72
1e	99	69
1f	99	-77

solvent	time (h)	ee (%) ^b	yield (%)
CH ₂ Cl ₂	4.3	97	94
THF	40	96	50
Et ₂ O	40	NA	1
toluene	46	NA	3

Investigation of Reaction Scope for the Reactions Between Substituted α,β -Unsaturated Acyl Phosphonates and Indoles

R	mol % 1a	temp (°C)	time (h)	% ee⁵	yield (%)
Me (9a)	10	-78	4	97	75 (10a)
Me (9a)	10	-56	20	96	99c (10a)
Me (9a)	10	-24	20	74	99c (10a)
Me (9a)	5	-78	20	98	88 (10a)
Me (9a)	3	-78	48	95	72 (10a)
Et (9b)	10	-50	17	97	65 (10b)
i-Pr (9c)	10	-78	20	99	82 (10c)
CH ₂ OTBDPS (9d) ^d	10	-78	17	94	57 (10d)
Ph (9e)	20	-78	48	80	85 (10e)

 Good tolerance for alkyl substitution at temperatures below -50 °C and with low catalyst loadings.

indole	R¹	R ²	R ³	R⁴	time (h)	ee (%) ^b	yield (%)
11b	Н	Н	Н	Н	3	83	83 (12b)
11a	Me	H	H	H	21	96	78 (10a)
11c	Allyl	H	H	H	5	98	76 (12c)
11d	Bn	H	H	H	20	99	85 (12d)
11e	Ts	H	H	H		no reacti	ion
11f	Me	Me	H	H	2	86	94 (12f)
11g	Me	Ph	H	H	20	65	62 (12g)
11h	Bn	H	H	Br	19	>99	64 (12h)
11i	Bn	H	H	C1	19	>99	66 (12i)
11j	Bn	H	H	OMe	19	96	67 (12j)
11k	Bn	H	H	CO ₂ Me	17	96	68 (12k)
111	Bn	H	NO_2	H	6 d	NA	trace
$11m^c$	Bn	H	C1	H	20	99	85 (12m)
11 n ^c	Bn	H	CO ₂ Me	H	47	85	68 (12n)

- Electron-withdrawing groups deactivate the indole substrate.
- Overall good tolerance for methoxy, halogen and ester functionality.

Investigation of α , β -Unsaturated 2-Acyl Imidazole Substrates for use in the Friedle-Crafts Alkylations of *N*-Methylindole

solvent ^b	temp (°C)	conv (%)c	time (h)	% ee
CH ₂ Cl ₂	-78	99	5	75
THF	-78 to -27	17	48	79
toluene	-78 to -27	17	48	33
CH ₃ CN	-38	99	17	89
CH2Cl2/THF	-78	81	48	30
CH ₂ Cl ₂ /toluene	-78	89	48	60
CH2Cl2/CH2CN	-78 to -27	99	48	79

additive	conv. (%)b	% ee
none	99	87
15 mg 4 Å MS	99	90
0.05 equiv of H ₂ O	99	84
0.5 equiv of H ₂ O	80	53

catalyst	conversion (%)b	% ee ^c
1a	91	98
1b	78	93
1c	55	96
1e	39	92
1g	19	36

• CH₃CN, 4 Å MS, -40 °C

Figure 1. Catalyst loading profile for the Friedel–Crafts reaction with α , β -unsaturated 2-acyl imidazole 13a (0.26 M in substrate, CH₃CN, 4 Å MS, -40 °C) and α , β -unsaturated acyl phosphonate 9a (0.13 M in substrate, CH₂Cl₂, -78 °C) with *N*-methylindole (11a) catalyzed by Sc(III)–Indapybox 1a.

Figure 2. Temperature profile for the alkylation of N-methylindole (11a) with 2-acyl imidazole 13a (1 mol % 1a, 0.26 M in substrate, CH₃CN, 4 Å MS) and acyl phosphonate 9a (10 mol % 1a, 0.13 M in substrate, CH₃Cl₂).

- The 2-acyl imidazole substrate offers comparable %ee over a more robust temperature range than the corresponding acyl phosphonate.
- Opposite enantiomer is observed.

Comparison of α,β -Unsaturated 2-Acyl Heterocyclic Substrates in the Sc(III) Catalyzed Friedel-Crafts Reaction with *N*-Methylindole: Importance of Tight Substrate/Catalyst Chelation

• α,β -Unsaturated 2-acyl heterocyclic substrates containing five membered heterocyclic rings chelate optimally to the Sc(III) catalyst and afford the best reaction enantioselectivities.

Investigation of Reaction Scope for the Reactions Between Substituted α , β -Unsaturated 2-Acyl Imidazoles and Indoles

R	time (h)	yield (%)	% ee ^b
Me (13a)	20	99	92 (14a)
<i>i</i> -Pr (13b)	20	99	95 (14b)
t-Bu (13c)	18	17	NA (14c)
Ph (13d)	18	99	91 (14d)
Bn (13e)	18	95	94 (14e)

R	time (h)	yield (%)	% ee ^b
Me (13a)	3	93	93 (14a)
Et (13f)	12	97	92 (14f)
n-Bu (13g)	8	95	93 (14g)
i-Pr (13h)	12	78	94 (14h)
CO ₂ Et (13i)	12	95	96 (14i)
Ph (13j)	8	94	91 (14j)
CH ₂ OTBDPS (13k)	8	71	91 (14k)
2-furan (13I)	8	86	83 (141)

 Good tolerance for alkyl, aryl and carboxylate β-substitution at 0 °C

indole	R ¹	R ²	R³	R ⁴	mol % 1a	time (h)	ee (%) ^b	yield (%)
11b	Н	Н	Н	Н	2.5	20	65	80 (15a)
11a	Me	H	H	H	2.5	3	93	93 (14a)
11c	allyl	H	H	H	2.5	24	88	80 (15c)
11d	Bn	H	H	H	2.5	8	98	90 (15d)
11f	Me	Me	H	H	2.5	2	91	88 (15f)
11g	Me	Ph	H	H	5	90	66	43 (15g)
11j	Bn	H	OMe	H	2.5	20	97	99 (15j)
11h	Bn	H	Br	H	5	20	92	55 (15h)
11i	Bn	H	C1	H	5	20	95	70 (15i)
11o	Bn	H	Me	H	5	20	93	91 (150)
11p	Bn	Н	Н	OMe	5	20	95	99 (15p)

- Low tolerance for bulky substituents in the R² position.
- Good tolerance for alkyl, methoxy and halogen substituents in the R³ and R⁴ position.

Friedel-Crafts Reactions with α,β -Unsaturated 2-Acyl Imidazoles

and Substituted Pyrroles

R	monomer/dimer ^b	yield (%)	% ee ^c
Me (13a)	2.2:1 ^d	69	87 (17a)
<i>i</i> -Pr (13b)	>10:1	91	94 (17b)
Ph (13d)	>20:1	98	94 (17d)
Bn (13e)	>10:1	84	91 (17e)

 Increasing the steric bulk of R increases enantioselectivity and suppresses dimer formation.

R	yield (%)	% ee ^b
Me (13b)	90	93 (17b)
Et (13m)	91	86 (17m)
i-Pr (13n)	90	91 (17n)
CO ₂ Et (130)	99	84 (17o)
Ph (13p)	99	96 (17p)
4-MeOPh (13q)	98	92 (17q)
4-MeO ₂ CPh (13r)	99	96 (17r)
2-furan (13s)	95	91 (17s)

 Good tolerance for alkyl, aryl and carboxylate β-substitution.

R	% ee ^b	yield (%)
H (16a)	94	96 (17b)
Me (16b)	78	89 (17t)
Bn (16c)	11	67 (17 u)

• Enantioselectivity is decreased with increasing steric demand of the N-alkylpyrrole substituents and substituents in the pyrrole 3-position.

Extension of the Reaction Scope to the Synthesis of 2-Substituted Indoles, Intermolecular Friedel-Crafts Alkylations and Alkylation of 3-Dimethylaminoanisole and 2-Methoxyfuran

R	yield (%)	% ee ^b
Me (13b)	99	95 (23b)
Et (13m)	97	77 (23m)
<i>i</i> -Pr (13n)	62	72 (23n)
Ph (130)	98	96 (230)
4-MeOPh (13p)	97	90 (23p)
4-CO ₂ MePh (13q)	85	97 (23q)
4-ClPh (13r)	98	96 (23r)
2-ClPh (13s)	90	93 (23s)
4-BrPh (13t)	85	95 (23t)
2-furyl (13u)	92	80 (23u)

 Good yields and enantioselectivities for both alkyl and aryl substrates.

• The corresponding reaction using the α,β -unsaturated 2-acyl *N*-methylimidazole afforded low conversion and poor enantioselectivity (<20% yield, 22% ee)

imidazole	n	R	mol % 1a	temp (°C)	yield (%)	% ee ^b
28a	0	Н	5	0-rt	no cor	iversion
28b	1	Bn	5	0	99	9 (29b)
28c	1	Н	2	-40	99	97 (29c)
28c	1	H	5	-40	99	96 (29c)
28c	1	H	20	-40	99c	88 (29c)
28c	1	H	50	-40	99c	79 (29c)
28d	2	H	10	0-rt	decomposition	

 Good yields and enantioselectivities for the formation of 6-membered rings. Reaction was unsuccessful for 5- and 7-membered rings.

65% yield, 98% ee

• The corresponding reaction using the α,β -unsaturated acyl phosphonate provided a complex mixture of products.

Elaboration of Friedel-Crafts Alkylation Products

• Efficient conversion of acyl phosphonates to esters and amides.

 Conversion of 2-Acyl imidazoles to ketones, aldehydes, esters, carboxylic acids, amides and cyclic products.

conditions	yield (%)
1.1 equiv MeOTf, CH ₃ CN, rt, then 3 equiv DMAP	99
1.1 equiv MeOTf, $\mathrm{CH_{3}CN}$, rt, then 3 equiv Hünig's Base	99

Nuc(-) conditions	Nuc	time	yield (%)
MeOH/DBU	-ОМе	30 min	93 (31a)
EtOH/DBU	-OEt	30 min	86 (31b)
i-PrOH/DBU	-OCH(CH ₃) ₂	30 min	95 (31c)
H ₂ O/DBU	-OH	30 min	87 (31d)
i-PrNH ₂	$-NHCH(CH_3)_2$	20 min	77 (31e)
morpholine	morpholine	1 h	88 (31f)
aniline	-NHPh	12 h	84 (31g)

Crystal Structures for the Sc(III)Triflate Hydrates of the Ph-pybox and Inda-pybox Complexes: Analysis of Possible Bidentate

Crystal structures show seven-coordinate pentagonal bipyramidal geometry

• Sterically favored when binding bulky substrates.

 Possibly active when sterically less demanding substrates are used.

Mode of Binding for the Acyl Phosphonate Substrates with both the Sc(III)-Ph-PyBox and Sc(III)-Inda-PyBox Complexes

• Cavity size in the equatorial plane influences the acyl phosphonate binding orientation and accounts for the different stereochemistry observed in the products.

Figure 6. Eyring plot for the indole Friedel-Crafts reaction between α,β -unsaturated acyl phosphonate **9a** and Sc(III) complex **1a**.

• The strong linear correlation for the Eyring plot suggest that a single set of diastereomeric transition states are operating over the measured temperature range.

Mechanistic Considerations for the 2-Acyl Imidazole Reactions with Indole: Effect of Catalyst Concentration on Enantioselectivity

• Results indicate that the decrease in enantioselectivity with increasing mol% catalyst is not directly related to the catalyst concentration.

Mechanistic Considerations for the 2-Acyl Imidazole Reactions with Indole: Study of Nonlinear Effects and the Eyring Plot

- 1) The study of nonlinear effects suggest that the active catalyst is mononuclear.
- The Eyring plot suggest that a single set of diastereomeric transition states are operating over the measured temperature range.

c) 40 mol% 1a

100 90

€ 40 30

e 20

20

 $R^2 = 0.9384$

ee (%) of catalyst 1a

60

40

80

100

Mechanistic Considerations for the 2-Acyl Imidazole Reactions with Indole: Product Enhancement of Enantioselectivity

• Results suggest a seven –coordinate 1:1:1 product/substrate/catalyst complex.

Mechanistic Considerations for the 2-Acyl Imidazole Reactions with Indole: Product Enhancement of Enantioselectivity

• Results strongly support the formation of the seven –coordinate 1:1:1 product/substrate/catalyst complex.

Conclusion

• The authors have developed a highly efficient scandium(III) catalyzed Michael – Type indole Friedel – Crafts Alkylation Reaction based on α,β -unsaturated acyl phosphonate and 2-acyl imidazole substrates.

Good Yields
Overall Excellent Enantioselectivity
Good Product Elaboration

• The authors have also shed light on the mechanism of scandium(III) – pybox / bidentate substrate binding hence, elaborating on the origin of the observed product enantioselectivities and demonstrating the powerful utility of the scandium(III) – pybox catalyst.

