Axially Chiral Biaryl Diols Catalyze Highly Enantioselective Hetero-Diels-Alder Reactions Through Hydrogen Bonding

Aditya K. Unni, Norito Takenaka, Hisashi Yamamoto, and Viresh H. Rawal

J. Am. Chem. Soc. 2005, 127, 1336-1337

Background

• [4+2] cycloaddition of heterodienophiles with heterodienes.

HDA Reactions with Aldehydes and Ketones

- **Importance:** Formation of oxygen based heterocycles such as 5,6-dihydropyrans which are important synthetic units found in many natural products.
- **Problem:** Only highly reactive aldehydes and ketones readily undergo HDA reactions with electron rich butadienes.

• Past solutions:

- 1) High temperatures
- 2) High pressures (15-25 kbar)
- 3) Lewis acid activation

David Arnold 5/6/06

Top. Curr. Chem. 1997, 189, 1 - 107.

On the Road To Milder Conditions

Table 2. Hetero Diels-Alder Reactions of Various Aldehydes

In 2000, Viresh Rawal discovered that

- 1-amino-3-siloxy-1,3-butadienes are easily prepared, stable and highly reactive towards unactivated aldehydes at room temp. in CH_2Cl_2 to give dihydro-4-pyrone products, following N-acylation and subsequent β -elimination, in good yields.
- 1) Aromatic aldehyde reaction rates corresponded to there respective carbonyl electrophilicities.
- 2) Primary aliphatic aldehydes reacted within 2-3 hrs.
- 3) Secondary aliphatic aldehydes reacted within 6-8 hrs.
- 4) The tertiary aldehyde reacted in 71 hrs.

David Arnold 5/6/06 Org. Lett., **2000**, *2*, 3321 – 3323.

*Yield of chromatographically purified product. * Obtained as an inseparable mixture of diastereomers.

H-Bond Rate Acceleration of HDA Reactions of Unactivated Ketones: Viresh Rawal 2002

Table 1. Rates of HDA Reactions in Different Solvents TBSO + MeO-CHO - disolvents, rt - TBSO - Ar NMes - NMes					
entry	1 2 solvent	dielectric constant ^a	a rate constant (k) ^a	- relative rate	
1 2 3 4 5 6	THF-d ₈ benzene-d ₆ acetonitrile-d ₃ chloroform-d <i>tert</i> -butyl alcohol-d ₁₀ isopropyl alcohol-d ₈	7.6 2.3 37.5 4.8 10.9 18.3	$\begin{array}{c} 1.0\times10^{-5}\\ 1.3\times10^{-5}\\ 3.0\times10^{-5}\\ 3.0\times10^{-4}\\ 2.8\times10^{-3}\\ 6.3\times10^{-3} \end{array}$	1 1.3 3.0 30 280 630	

 o For the corresponding undeuterated solvent, at 25 \pm 5 $^{o}\mathrm{C}$. b Kinetics measured by NMR integration using internal standard.

entry	solvent	time (h)	solvolysis (%) ^o	yield (%)*
1	chloroform	48	20-25	45
2	tert-butyl alcohol	24	<5	71
3	isopropyl alcohol	3	10-15	60
4	ethanol	0.5	$\sim 50^{\circ}$	30
5	methanol	0.5	$\sim 40^{\circ}$	0
6	2-butanol	5	<5	78

Table 3. Cycloaddition Reactions of Diene 1 and Unactivated Ketones

entry	kalone	time"	product	ratio	yield (%)*
1	\bigcirc	5 h	° 68		78
2	\bigtriangledown	4d	° 66		35
3	\supset	5.5 h	° 60 60	4.21	75
4	- \-	5.5 h	° 6d	2.&1	74
5	Bu'	5.5 h	°	3:1	76
65		8 h	° GMe 61	1.51	81
7		3 h		in i	82
8	\bigcirc	19 h	° 🔶 6h		41
9	Ļ	30 h	° 🔶 61		40
10	OMe ↓ OMe	6 h	° C G G		33 ⁴
11		1.5 h	°		77

David Arnold 5/6/06 J. Am. Chem. Soc. 2002, 124, 9662-9663.

Chiral-Alchol Catalysts: Viresh Rawal 2003

Chiral Catalyst

- Novel example of a hydrogen bonding chiral catalyst, catalyzing an HDA reaction.
- Good yields and enantioselectivities

• Uncatalyzed HDA reaction does not proceed in toluene under identical conditions.

Nature 2003, 424, 146.

A Natural Extension: Axially Chiral Biaryl Diols: Viresh Rawal and Hisashi Yamamoto 2005

Synthesis of Axially Chiral BAMOLs

J. Am. Chem. Soc. 2005, 127, 1336-1337

A Natural Extension Continued...

entry	product	R	catalyst⁵	yield (%) ^c	ee (%) ^d
1	4a	Me	3b	75	97°
2	4b	n-propyl	3a	76	94
3	4c	$Ph(CH_2)_2$	3a	95	95
4	4d	PhS(CH ₂) ₂	3a	76	94 ^e
5	4e	Phth(CH ₂) ₃ ^f	3a	67	92°
6	4 f	1-propynyl	3a	42	98e
7	4g	i-butyl	3a	79	90e
8	4h	<i>c</i> -hexyl	3a	99	84
9	4i	Ph	3b	84	98
10	4j	3-(MeO)-C ₆ H ₄	3b	86	98e
11	$4\mathbf{k}$	2-(NO2)-C6H4	3b	93	98¢
12	41	1-naphthyl	3b	67	97¢
13	4m	2-furyl	3b	96	>99

•Straight-chain aliphatic aldehydes: good yields excellent ee's

•Branch-chain aldehydes: lower ee's

•Lewis basic heteroatoms are well tolerated

•Electron rich and electron poor aromatic aldehydes give comparable ee's.

David Arnold 5/6/06

J. Am. Chem. Soc. 2005, 127, 1336-1337

Crystal Structure of the Inclusion Complex of 2,2'-bis-(diphenylhydroxymethyl)binaphthylene and benzaldehyde

- 1:1 complex
- Intramolecular hydrogen bond between hydroxyls
- Intermolecular hydrogen bond to carbonyl of benzaldehyde
- Carbonyl activation through a single-point hydrogen bond

David Arnold 5/6/06 J. Am. Chem. Soc. 2005, 127, 1336-1337

Conclusion

- The use of hydrogen bonding solvents and chiral hydrogen bonding catalysts as carbonyl activators has proved to be an efficient method for both accelerating the hetero Diels-Alder reaction and controlling the stereochemical outcome.
- Chiral alcohol catalysis offers a potentially very useful alternative to traditional metal based Lewis acid catalysis and may possibly be extended successfully to many other asymmetric reactions requiring carbonyl activation.