A Tandem Epoxidation/Stereoselective Intramolecular [4+3] Cycloaddition Reaction Involving Nitrogen-Stabilized Oxyallyl Cations Derived from Chiral Allenamides

Challeppan Rameshkumar and Richard P. Hsung*

Angew. Chem. Int. Ed. Engl. 2004, 43, 615

Oxyallyl Cations

Conformation

Equilibria Affecting Reactivity

First Reported [4+3] Cycloaddition

Harmata, M.; Rashatasakhon, P. Tetrahedron, 2003, 59, 2371 Fort, A. W. J. Am. Chem. Soc. 1962, 84, 4979

Reactivity: Concerted vs. Stepwise

Transition States for [4+3] Cycloadditions

Extended Transition State (Chair-like)

Compact Transition State (Boat-like)

Preparation of Oxyallyl Cations

Reductive Conditions

Hoffman, H. M. R.; Clemens, H. E.; Smithers, R. H. J. Am. Chem. Soc. 1972, 94, 3940

Solvolysis Conditions

Shimizu, N.; Tanaka, M.; Tsuno, Y. J. Am. Chem. Soc. 1982, 104, 1330

Preparation of Oxyallyl Cations

Base-Mediated Conditions

+
$$\frac{1) \text{ AgBF}_4}{2) \text{ TEA}}$$

Mann, J.; Wilde, P. D.; Finch, M. W. J. Chem. Soc., Chem. Commun. 1985, 1543

Photochemical Conditions

Baltrop, J. A.; Day, A. C.; Samuel, C. J. Am. Chem. Soc. 1979, 101, 7521

Intramolecular [4+3] Cycloadditions

Harmata, M.; Elomari, S.; Barnes, C. L. J. Am. Chem. Soc. 1996, 118, 2860

TMS

OH

$$Tf_2O$$
 $2,6$ -lutidine

 -78 °C

Giguere, R. J.; Duncan, S. M.; Bean, J. M.; Purvis, L. Tetrahedron Lett. 1988, 29, 6071

Tandem Di-π-Methane Rearrangement/[4+3] Cycloaddition

Schultz, A. G.; Puig, S.; Wang, Y. J. Chem. Soc., Chem. Commun. 1985, 785

Ring-Opening Reactions of Oxabicylco[3.2.1] octanes

Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48

Lautens, M.; Hiebert, S.; Renaud, J.-L. J. Am. Chem. Soc. 2001, 123, 6834

Lautens, M.; Rovis, T. J. Am. Chem. Soc. 1997, 119, 11090

Preparation of 7-Membered Rings

Dieckmann Condensation

Ruzicka Cyclization

$$X \longrightarrow CO_2H \longrightarrow Ba(OH)_2 \longrightarrow O$$

Thorpe-Ziegler Cyclization

$$X \longrightarrow CN$$
 $Ph(Me)N^-M^+$ $X \longrightarrow O$

Prins Cyclization

Wender, P. A.; Takahashi, H.; Witulski, B.; J. Am. Chem. Soc. 1995, 117, 4720

Huffman, M. A.; Liebeskind, L. S.; J. Am. Chem. Soc. 1993, 115, 4895

Preparation of Allenamides

Wei, L.-L.; Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T. Org. Lett. 1999, 1, 2145

Inverse Electron Demand Diels-Alder Reactions

Wei, L. -L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron Lett. 1999, 40, 6903

Reactions of Allenamides

Auxilliary-Controlled Inverse Electron Demand Diels-Alder Reactions

R = H; 65% *dr* 87:13 R = Me; 57% *dr* 94:6

For R = alkyl, aryl, dr > 92:8

Wei, L.-L.; Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T. Org. Lett. 1999, 1, 2145

$$\frac{\text{n-BuLi, HMPA}}{\text{TMS}} = \frac{\text{(CH}_2)_3I}{\text{Ph}}$$

$$\frac{\text{Mo(CO)}_6, \text{DMSO}}{\text{toluenc, reflux}}$$

$$\frac{\text{TMS}}{70\%}$$

Xiong, H.: Hsung, R. P.; Wei, L. -L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. 2000, 2, 2869

Epoxidation of Amidoallenes

Xiong, H.; Hsung, R. P.; Berry, C. R.; Rameshkumar, C. J. Am. Chem. Soc. 2001, 123, 7174

A Tandem Epoxidation/Stereoselective Intramolecular [4+3] Cycloaddition Reaction Involving Nitrogen-Stabilized Oxyallyl Cations Derived from Chiral Allenamides

10 minutes, 45%; *dr* 95:5 30 minutes via syringe pump 75%, *dr* 95:5

No cycloadducts observed for 4-carbon tether

Gaul, C.; Seebach, D. Helv. Chim. Acta 2002, 85, 963

 • • • •	rohe	unu	acci coacicceivity	Ų,	Cycloadollions of	premereu	ancharmues.
 		_					

Entry	All	enamides ^[4]	Cycloaddı	ıcts ^{ibi}	Yield [%] ^[t]	Ratio ^[d]
1 2 3	Ph H O I I	(P)-20: n=1 (M)-20: n=1 23: n=2; P/M=1:1	N.H ¹ O H ² OTES	18 b 18 b 25 ^[e]	60 75 65	90:10 90:10 93:7
4	O N H	24: n=3; P/M=1:1	N; HIO H2	26	55	≤5:95
S 6	Ph H TESO	(M)-27 (P)-27	N:H O H OTES	28 28	30 34	≤ 5:95 ≤:95
7 8	Ph O H O H O H O H O H O H O H O H O H O	29: PG = TES: P/ M = 2.5:1 30: PG = Ac: P/M = 2.5:1	N. OH OPG	31 32	78 83	86:14 90:10
9	0-/ N H /	$R^1 = R \cdot B n$ 33: $P/M = 3:1$	N.H. O. OTES	34	65	71:29
10	H ¹ O	35: $R^1 = (S)$ -Ph; $P/M = 1:1$ $R^1 = (S)$ -iPr; $P/M = 2:1$	N, H O OTES	ent- 18 b ^{if]}	60	90:10
11	TESÓ	(P)-36 (M)-36	(0)/	37 37	60 60	95:5 .95:5

[a] Details of the syntheses of the allenamides are given in the Supporting Information. All reactions were carried out in Ch_2Cl_2 (conc. ca. 0.075 M) at $-78\,^{\circ}C$; DMDO (2.5 equiv) was added as a solution in acetone and Ch_2Cl_2 was added at $-78\,^{\circ}C$ through a cannula. The reaction was complete after 5–15 min. [b] N* denotes the corresponding chiral auxiliary. [c] Yields of isolated products. [d] Ratios of isomers determined by ^{1}H and/or ^{13}C NMR spectroscopy. [e] The X-ray structure was obtained. [f] Assigned by

15

2/21/2004

Corey Stephenson @ Wipf Group