Current Literature claire coleman

The Direct and Enantioselective

Organocatalytic Oxidation of Aldehydes

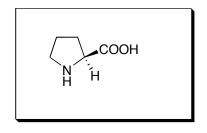
Sean P. Brown, Michael P. Brochu, Christopher J. Sinz, and

David W. C. MacMillan.

JACS, 2003, 125, 10808-10809

Asymmetric Organocatalysis

The use of chiral organic molecules to catalyse an enantioselective transformation

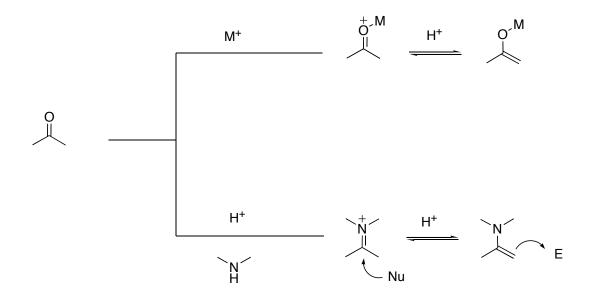

An alternative to organometallic mediated asymmetric processes

Advantages include

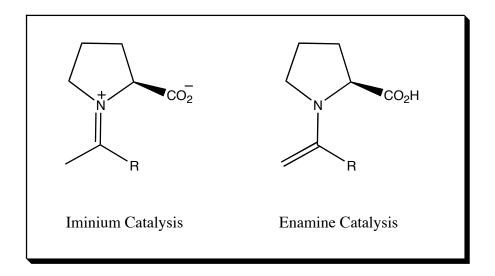
- Easy manipulation
- Environmentally friendly
- Tolerates aerobic conditions
- Does not require dry solvents
- Amenable to a variety of solvents
- Amenable to solid phase

Examples of Organocatalysts

Cinchona Alkaloids


L-Proline

Amino Acid Derivatives


Peptide based catalysts

Aminocatalysis

(A Biomimetic strategy used by enzymes such as class I aldolases.)

Organocatalysis with L - Proline

The First Enantioselective Organocatalytic Reaction:

Robinson Annulation

Using D- or L- Proline

Two step: Intramolecular aldol step catalysed by (L)-Proline high yield (100%) and ee (93%) *J. Org. Chem*, **1974**, 39, 1615-1621.

One step: Lower yield (49%) and ee (76%) obtained (requires more catalyst) *Tett. Lett.*, **2000**, 6951-6954. *JACS*, **2000**, 122, 2395-2396.

Aldol Reaction

Highly enantioselective proline catalysed direct intermolecular aldol reaction. *JACS*, **2000**, *122*, 2395-2396.

Mechanism of the proline catalysed aldol reaction Synlett, **2001**, 1675-1686.

Enamine Catalysis Cycle

JACS, **2002**, 124, 5656-5657.

MacMillan's Organocatalysts (Available from Sigma Aldrich)

derivative of phenylalaine catalyses asymmetric Diels Alder 1,3-dipolar additions Pyrrole alkylations

Asymmetric indole alkylations Friedel-Crafts Alkylations Conjugate additions **Macmillan** prepared optically active 1,2-diols with the enantiselective organocatalytic □-oxidation of aldehydes as the key step.

Using proline as the catalyst and nitrosobenzene as the oxygen source

Previously reported the proline catalysed cross aldol reaction of aldehydes JACS, 2002, 124, 6798.

Proline Catalyzed Cross Aldol Addition

87% yield, 14:1 anti:syn, 99% ee

Organocatalyzed Direct α -Oxyamination

Examined •Solvent effects• Catalyst loading• Substrate scope

Effect of Solvent on the Asymmetric **□**-Oxyamination

entry	solvent	%yield	%ee
1	dioxane	8	97
2	EtOAc	18	95
3	THF	24	97
4	DMSO	35	94
5	DMF	46	97
6	NMP	50	98
7	CH₃CN	67	96
8	PhH	67	97
9	CHCl₃	78	96

Isolated yields at arbitary 15-min time point. Yields were calculated after conversion to the corresponding primary alcohol

Variation of solvents has a pronounced effect on reaction rates

Excellent levels of enantioselection observed for a diverse range of solvents

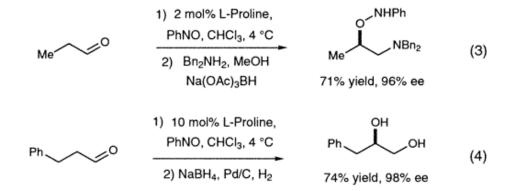
Improved selectivities were observed at lower temperatures

Effect of catalyst loading on Organocatalysed Oxidation

entry	mol%L-proline	time	%yield	%ee
1	10	20 min	88	97
2	5	45 min	86	97
3	2	2 h	88	97
4	1	8 h	83	97
5	0.5	18 h	68	94

Yields based on the isolation of the corresponding primary alcohol.

Catalyst loadings as low as 0.5 mol% can be used


The operational use of 2 mol% L-proline ensures high reaction efficiency and enantioselectivity with favourable reaction times

Enantioselective []-Oxyamination: Substrate Scope:

ĵ	0	5 mol% L-Proline	Î.o.	
н	Ph N	CHCl ₃ , 4 °C, 4 h	H R	`NHPh
entry	R	Product	% yield ^a	% ee ^b
1	Me	H NHPh	88	97 ^c
2	n-Bu	H NHPh	79	98
3	i-Pr	H NHPh	85	99
4	CH ₂ CH=CH ₂	H NHPh	80	99 ^d
5	CH₂Ph	O NHPh	95	97 ^d
6	Ph	H NHPh	60	99
7	(CH ₂) ₃ OTIPS	H NHPh OTIPS	76	98
8	CH ₂ -(3'- <i>N</i> -methyl- indole)	NHPh NMe	83°	98

The \square -oxyaldehyde products are oligomeric in solution and were isolated as the corresponding primary alcohols

(The oligomeric aldehydes undergo reactions typical of aldehydes)

Conclusions

- •All reactions conducted in air using wet solvents-highly suitable for industry
- •Enantioselective route to chiral 1,2-diol precursors

Future Work

- •Useful building blocks for natural product synthesis
- Multi-component reactions
- Discovery of more organocatalysts

Incidentally, a paper published on similar work appeared at the same time in *Angewandte chemie Int.*, **2003**, *42*, 4247-4250.