Synthesis of Cyclic and Acyclic **p**-Amino Acids via Chelation-Controlled 1,3-Dipolar Cycloaddition

Hanselmann, R.; Zhou, J.; Ma, P.; Confalone, P.N.

Bristol-Myers Squibb Pharma Company

J. Org. Chem. 2003, 68, 8739

"Although some powerful enantioselective synthetic methodologies have been reported, diastereoselective approaches have proven to be reliable competitive synthetic strategies."

Recent Developments in the Catalytic Asymmetric Synthesis of **G**- and **B**-Amino Acids

Ma, J.

Angew. Chem. Int. Ed. 2003, 42, 4290

56 references published between 1999 and 2003, including 17 J. Am. Chem. Soc. and 18 Angew. Chem. Int. Ed.

Juhl, K.; Jorgensen, K. A. J. Am. Chem. Soc. **2002**, 124, 2420

N

L*

80

74

53

80

76

24

 CH_3

CH₂CH₃

 $CH_2(c-C_6H_{11})$ CH_2Ph

> CH(CH₃)₂ Ph

92

92

90

95

87

83

Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc. **1999**, 121, 8959

Horstmann, T. E.; Guerin, D. J.; Miller, S. J. Angew. Chem. Int. Ed. 2000, 39, 3635

Nelson, S. G.; Spencer, K. L. Angew. Chem. Int. Ed. 2000, 39, 1323

R ¹	Yield (%) γ-lactone	ee (%) γ-lactone	Yield (%) azide	ee (%) azide
CH ₂ OBn	88	91	94	92
(CH ₂) ₂ Ph	96	97	95	93
CH ₂ CH(CH ₃) ₂	95	95	95	97
(CH ₂) ₂ CH ₃	95	96	78	
(CH ₂) ₃ CH ₃	80	97	83	
(CH ₂) ₈ CH=CH ₂	96	94	87	
<i>с</i> -С ₆ Н ₁₁	48*	99	93	

Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907

Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. Org. Lett. 2001, 3, 1701

Lee, S.-g.; Zhang, Y. J. Org. Lett. 2002, 4, 2429

Lee, S.-g.; Zhang, Y. J. Org. Lett. 2002, 4, 2429

You, J.; Drexler, H.-J.; Zhang, S.; Fischer, C.; Heller, D. *Angew. Chem. Int. Ed.* **2003**, *42*, 913

Tang, W.; Zhang, X. Org. Lett. **2002**, *4*, 4159

$R^{1} + R^{2}$ $R^{2} + R^{2}$ $R^{2} = H$	R ¹ NHAc	H ₂ (20 psi) 0.5 mol% [Rh(TangPHOS)(nbd)]SbF ₆ THF, rt, 24 h <i>(100%)</i>		R ¹ NHAc	
		R^1	ee (%)		
		CH ₃	99.3	(<i>iso</i> propyl ester)	
		CH ₂ CH ₃	99.6		
	$ \land \land $	(CH ₂) ₂ CH ₃	99.6	(ethyl ester)	
	TangPHOS	CH ₂ CH(CH ₃) ₂	98.3		
		Ph	93.8		
		p-FC ₆ H ₄	95.0		
		p-CIC ₆ H ₄	92.3		
		<i>p</i> -BrC ₆ H ₄	95.1		
		<i>p</i> -MeC ₆ H ₄	94.0		
		<i>p</i> -MeOC ₆ H ₄	98.5		
		p-BnOC ₆ H ₄	98.5		
		o-MeC ₆ H ₄	74.3		
		o-MeOC ₆ H ₄	83.1		

Christensen, C.; Juhl, K.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 2002, 67, 4875

Fujida, H.; Kanai, M.; Kambara, T.; Iida, A.; Tmioka, K. *J. Am. Chem. Soc.* **1997**, *119*, 2060

Davies, H. M. L.; Venkataramani, C. Angew. Chem. Int. Ed. 2002, 41, 2197

Taggi, A. E.; Haffez, A. M.; Wack, H.; Young, B.; Drury III, W. J.; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831

$R^{1} \rightarrow CO$ $R^{1} \rightarrow R^{3}$ NH_{2} $R^{1} = CO_{2}$	$R^{2} = 0$ $R^{2} = CI$ $R^{3} = CI$	EtO ₂ C H Me ₂ N NMe ₂	T EtO ₂	C ¹ R ³ R ²	Sml ₂ THF, rt, 20 n $(R^2 = H, R^3 = OBn: 90)$	nin EtO 2%)	н № О ₂ с``́Ов⊧
[∽ .OMe	10 mol% catalyst,	R^2	R^3	Yield (%)	ee (%)	de (%)
	toluene, rt, 5 h	Ph	Ph	36	99		
		Н	Ph	65	96	98	
		Н	CH ₂ CH ₃	57	99	98	
	Ph Ō		Н	OPh	45	99	98
	Ö		Н	OAc	61	98	98
	catalyst		Н	OCH ₂ Ph	56	95	98
Chris	s Kendal @ Wipf	Group	10			11/0	08/03

Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180

see also:

Jaber, N.; Carree, F.; Fiaud, J.-C.; Collin, J. *Tetrahedron: Asymmetry* 2003, 14, 2067
Murahashi, S.-I.; Imada, Y.; Kawakami, T.; Harada, K.; Yonemushi, Y.; Tomita, N. J. Am. Chem. Soc. 2002, 124, 2888
Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964
Wenzel, A. G.: Lalonde, M. P.: Jacobsen, E. N. Svnlett 2002. 1919 Chris Kendal @ Wipf Group 11

11/08/03

Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180

Xue, S.; Yu, S.; Deng, Y.; Wulff, W. D. *Angew. Chem. Int. Ed.* **2001**, *40*, 2271

ЛC

Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180

13

11/08/03

Fernandez-Suarez, M.; Munoz, L.; Fernandez, R.; Riguera, R. *Tetrahedron: Asymmetry* **1997**, *8*, 1847

Ueno, M.; Ishitani, H.; Kobayashi, S. Org. Lett. 2002, 4, 3395

F₂C

Hanselmann, R.; Zhou, J.; Ma, P.; Confalone, P. N. *J. Org. Chem.* **2003**, *68*, 8739

R ¹	CO_2H R^2	_ OH ≣			
ŇH	2		→		Me
		<i>i</i> -PrOH, 40 or 65 °C	:	using Ph' NHOH	
	Substrate	Product	Yield (%)	dr	dr
	СНО	ON Ph	95	96:4	63:37
	СНО	ON Ph	89	94:6	
	СНО	Ph- N-O	83	97:3	65:35
(CHO) _n + HO		HO ,,,, O N OH Ph	90	96:4	50:50
	о н + HO	HO ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	94	95:5	
		Ph $1. H_2, Pd(OH)_2/C, Me$ $2. Cbz-Cl, NaHCO_3, T$ $3. NaClO_2, NaOCl, Te$ (63%)	OH ⁻ HF/H ₂ O HC empo		