Highly Enantioselective Friedel-Crafts Reaction of Indoles with Imines by a Chiral Phosphoric Acid

Qiang Kang, Zhuo-An, and Shu-Li You JACS Current Literature Presention Bryan Wakefield

Organocatalytic Friedel-Crafts Reaction

Paras, N. A.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2001**, *123*, 4370 More examples:

Austin, J. F.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2002**, *123*, 1172 Paras, N. A.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2002**, *124*, 7894

Chiral Hydrogen-Bond Donors

R N N H	² + R ₁ √0	1. 3 Å MS or Na ₂ SC 2. AcCl, 2,6-lutidine 5-10 mol % cat. Et ₂ O, -78 °C to -3	D₄ R NO °C	NAC R ₁	<i>i</i> -Bu <u>t</u> -Bu <i>i</i> -Bu N O H	S N ^W H N Ph
	Entry	R	R_1	Yield (%)	ee (%)	
_	1	Н	$CH(CH_2CH_3)_2$	65	93	
	2	Н	$CH(CH_3)_2$	67	85	
	3	Н	$n-C_5H_{11}$	65	95	
	4	Н	$CH_2CH(CH_3)_2$	75	93	
	5	Н	CH ₂ CH ₂ OTBDPS	77	90	
	6	5-MeO	$CH(CH_2CH_3)_2$	81	93	
	7	6-MeO	$CH(CH_2CH_3)_2$	76	85	

Taylor, M. S.; jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558

Ar= 3,5-CF₃-phenyl or 3,5-Me-phenyl

Entry	\mathbf{R}_1	Yield (%)	ee (%)
1	CH ₂ CH ₂ Ph	88	90
2	CH ₂ CH ₂ OBn	74	82
3	Су	71	96
4	<i>i</i> -Pr	82	95
5	Ph	40	67

McDouglas, M. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094

Advantages of Phosphoric Acids

-Tetradentate structure affords a conformationally stable structure

-Can be used to eliminate rotation by constraining the phosphorus in a ring -Other acids such as sulfonic and carboxylic freely rotate.

-Acidity is great enough to activate imines.

-pKa of diethyl phosphate is 1.39.

-The phosphoryl oxygen should function as a Lewis basic site.

-This could allow phosphoric acids to act as bifunctional catalysts.

Birth	14		1-5		<i>SJ.tittttttttttttt</i>	•• (, •)	
1	Ph	Me	Et	100	87:13	96	
2	<i>p</i> -MeOC ₆ H ₄	Me	Et	100	92:8	88	
3	p-FC ₆ H ₄	Me	Et	100	91:9	84	
4	p-ClC ₆ H ₄	Me	Et	100	86:14	83	
5	p-MeC ₆ H ₄	Me	Et	100	94:6	81	
6	2-Thienyl	Me	Et	81	94:6	88	
7	PhCH=CH	Me	Et	91	95:5	90	
8	Ph	Bn	Et	100	93:7	91	
9	<i>p</i> -MeOC ₆ H ₄	Bn	Et	92	93:7	87	
10	PhCH=CH	Bn	Et	65	95:5	90	
11	Ph	Ph ₃ SiO	Me	79	100:0	91	

Akiyama, T.; Itoh, J.; Yokota, K.; fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566

Ar= 4-(β -Naph)-C₆H₄

Entry	R_1	Yield (%)	ee (%)
1	<i>p</i> -MeOC ₆ H ₄	93	90
2	p-MeC ₆ H ₄	98	94
3	p-BrC ₆ H ₄	96	98
4	p-FC ₆ H ₄	94	96
5	o-MeC ₆ H ₄	94	93
6	1-Naph	99	92

Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356

Ar= 3,5-dimesitylphenyl

Entry	R_1	Yield (%)	ee (%)
1	<i>p</i> -MeOC ₆ H ₄	95	96
2	o-MeC ₆ H ₄	84	94
3	<i>m</i> -MeC ₆ H ₄	80	94
4	<i>p</i> -MeC ₆ H ₄	96	97
5	o-BrC ₆ H ₄	85	91
6	m-BrC ₆ H ₄	89	96
7	p-BrC ₆ H ₄	86	96
8	p-ClC ₆ H ₄	88	97
9	p-FC ₆ H ₄	82	97
10	1-naphthyl	84	86
11	2-naphthyl	93	96
12	2-furyl	94	86
13	Ph	95	97

Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804

Linuy	K ₁	K ₂	1 leiu (70)	ee (70)	
1	Ph	<i>p</i> -MeC ₆ H ₄	95	94	
2	Ph	Me	86	93	
3	Ph	<i>p</i> -MeOC ₆ H ₄	89	91	
4	Ph	o-MeC ₆ H ₄	80	73	
5	Ph	p-ClC ₆ H ₄	98	95	
6	p-ClC ₆ H ₄	<i>p</i> -MeC ₆ H ₄	88	94	
7	p-BrC ₆ H ₄	p-MeC ₆ H ₄	96	92	
8	p-CF ₃ C ₆ H ₄	<i>p</i> -MeC ₆ H ₄	99	99	
9	<i>p</i> -MeOC ₆ H ₄	p-MeC ₆ H ₄	92	90	
10	2-thienyl	p-MeC ₆ H ₄	94	87	

Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005, 15696

Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127, 9360

Entry	R_1	Yield (%)	ee (%)
1	Ph	87	94
2	<i>p</i> -MeC ₆ H ₄	79	91
3	<i>p</i> -MeOC ₆ H ₄	77	90
4	$p-NO_2C_6H_4$	71	95
5	p-ClC ₆ H ₄	75	95
6	p-FC ₆ H ₄	75	94
7	m-FC ₆ H ₄	81	95
8	$o-FC_6H_4$	60	83
9	2-naphthyl	73	96

Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84

Friedel-Crafts reaction with Aliphatic Imines

Ar= 2,4,6-Triisopropylphenyl

Entry	Solvent	Time (h)	Yield (%)	ee (%)
1	Toluene	3	26	80
2	PhCF ₃	3	91	79
3	CH_2Cl_2	3	84	84
4	$(CH_2Cl)_2$	3	83	83
5	DMF	24	17	54
6	DMSO	24	22	10
7	CH ₃ NO ₂	3	93	87
8	CH ₃ CN	3	84	88
9 ^a	CH ₃ CN	6	85	91
$10^{\rm b}$	CH ₃ CN	12	95	93

Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292

Friedel-Crafts reaction with Aliphatic Imines

Ar= 2,4,6-Triisopropylphenyl

Entry	R	R_1	R_2	Enamine ratio (E/Z)	Yield (%)	ee (%)
1	Н	Н	Me	1:0	87	94
2	Н	Н	<i>n</i> -Bu	1:1	98	94
3	Н	Н	Bn	1:1	82	93
4	Н	Н	<i>i</i> -Pr	1:1	80	91
5	Н	Н	Ph	1:0	63	90
6	Н	Me	Me	N/A	69	94
7	5-MeO	Н	Me	1:0	90	90
8	5-Me	Н	Me	1:0	84	93
9	5-Br	Н	Me	1:0	91	93
10	6-Br	Н	Me	1:0	78	96
11	5-CO ₂ Me	Н	Me	1:0	86	93

Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292

Kang, Q.; Zhao, Z.A.; You, S.L. J. Am. Chem. Soc 2007, 129, 1484.

Friedel-Crafts reaction with Aromatic Imines

					R ₁	
					HN Ar	
		R_1	10 mol 🤋	% Cat. 6	\sim	
	R_{μ}^{μ}	+ '	Toluene	, - 60 °C B		
	N H	Ar			N N	
Entry	R	Ar	R_1	Time	H Yield (%)	ee (%)
1	Н	C_6H_5	Ts	30 min	83	98
2	Н	C_6H_5	Bs	15 min	88	99
3	5-OMe	C_6H_5	Bs	20 min	87	97
4	5-OMe	C_6H_5	Bs	15 min	84	99
5	5-Me	C_6H_5	Bs	15 min	89	99
6	5-Me	C_6H_5	Bs	15 min	83	99
7	5-Br	C_6H_5	Bs	40 min	82	98
8	5-Br	C_6H_5	Bs	40 min	89	99
9	5-Cl	C_6H_5	Bs	2 h	68	98
10	5-Cl	C_6H_5	Bs	1.5 h	87	99
11	Н	<i>p</i> -MeC ₆ H ₄	Ts	10 min	93	99
12	Н	<i>m</i> -NO ₂ C ₆ H ₄	Ts	15 min	85	89
13	Н	p-ClC ₆ H ₄	Ts	24 h	91	94
14	Н	p-BrC ₆ H ₄	Ts	24 h	71	82
15	Н	p-CF ₃ C ₆ H ₄	Ts	14 h	83	85
16	Н	<i>m</i> -MeOC ₆ H ₄	Ts	1 h	90	96
17	Н	<i>m</i> -MeOC ₆ H ₄	Ts	1 h	90	97
18	Н	Су	Ts	5 h	56	58
19	Н	C_6H_5	Bs	40 min	94	99

Kang, Q.; Zhao, Z.A.; You, S.L. J. Am. Chem. Soc 2007, 129, 1484.

Conclusion

- Chiral phosphoric acids have been to catalyze a variety of asymmetric imine additions.
- Most recently, these acids have been used in a Friedel-Crafts reaction between both aliphatic and aromatic imines with excellent yields and *ee*.
- In the future, this chemistry could benefit from an expansion of its scope to include other aromatic rings such as aniline and pyrole derivatives.
- Also, the design of a new group of catalysts that could be used in additions to aldehydes and ketones would greatly increase the utility of chiral phosphoric acids