New Synthetic Routes to Tamiflu

E.J. Corey, Ying-Yeung Yeung, and Sungwoo Hong JACS ASAP

Masakatsu Shibasaki, Yuhei Fukuta, Tsuyoshi Mita, Nobuhisa Fukuda, Motomu Kanai JACS ASAP

Chiral 1,2 Diamines

Natural Products

Chiral Ligands

T. Gall, Angew. Chem. Int. Ed., 1998, 2580

balanol 13

Early Example of Desymmetrization of Aziridines

Table 1. Asymmetric Ring Opening of N-2,4-Dinitrobenzyl Cyclopentene Imine (2) Catalyzed by Cr(III) Complexes of Ligands $4-10^a$

ligand	4	5	6	7	8	9	10
ee (%) ^b	4	7	24	66	64	69	70
convn (%) <i>c</i>	30	50	60	100	100	100	100

^a Reactions were carried out at room temperature in acetone with 5 mol % of catalyst. ^b Enantiomeric excesses were determined by HPLC analysis of crude reaction mixtures. ^c Reaction time was 24 h for 4-6 and 3 h for 7-10.

Table 2. Enantioselective Ring Opening of Meso N-2,4-Dinitrobenzyl Aziridines Catalyzed by $\mathbf{10} \cdot \text{CrN}_3^a$

$$O_2N$$
 O_2N
 O_2N

entry	R_3	R_3	temp (°C)	time (h)	isolated yield (%)	ee (%) ^b
1	-(CH ₂) ₄ -		-30	48	95	94
2	-CH ₂ CH=CHCH ₂ -		-30	100	75	88
3	$-(CH_2)_{3-}$		-30	72	87	87
4	-CH ₂ OCH ₂ -		-15	90	73	90
5	Me	Me	-30	96	80	83

^a Reactions were carried out with 10 mol % catalyst and 4 Å molecular sieves (ca. 1:1 w/w relative to the aziridine substrate). ^b Enantiomeric excesses were determined by HPLC analysis of crude reaction mixtures.

E. Jacobsen, Org. Lett. 1999, 1611

Desymmetrization of *meso*-Aziridines with TMSN₃

Table 1. Optimization of Reaction Conditions

entry	М	substrate	additive ^a	time (h)	yield (%) ^b	ee (%) ^c
1	Gd	3a	DMP, TFA	20	>99	46
2	Gd	3a	DMP	20	>99	64
3	Gd	3a	none	20	>99	66
4	Gd	3b	none	16	90	85
5	Dy	3b	none	16	93	90
6	Er	3b	none	16	89	89
7	Yb	3b	none	16	91	82
8	Sc	3b	none	16	90	63
9	Υ	3b	none	1	90	92

^a DMP = 2,6-dimethylphenol (1 equiv was used). TFA = trifluoroacetic acid (5 mol % was used). ^b Isolated yield. ^c Determined by chiral HPLC.

Desymmetrization of *meso*-Aziridines with TMSN₃

Table 2. Catalytic Enantioselective Desymmetrization of *meso*-Aziridines with TMSN₃

R'	NO ₂	2 2	(O [/] Pr) ₃ (x (2x mol % MSN ₃ (1.	%) 5 equiv) ➤	R N		NO ₂
entry	substrate $(R = 3,5-(NO_2)_2-$	Bz)	temp. (°C)	catalyst (x mol %)	time (h)	yield (%) ^a	ee (%) ^b
1 ^c	NR	3b	0	1	36	97	92 ^d
2	NR	3с	r.t.	5	36	>99	94
3 4	NR	3d	40 40	10 5	20 48	94 93	86 83
5	NR	3e	r.t.	2	48	96	91 ^{<i>d</i>}
6 [NR	3f	r.t.	2	48	98	91
7	ONR	3g	40	10	18	>99	96

8	CbzN	3h	r.t.	5	48	>99	94
9	Me NR	3i	r.t.	1	48	94	95 ^d
10	n-Pr NR	3j	r.t.	5	48	>99	87
11	Ph NR	3k	r.t.	2	48	>99	93

^a Isolated yield. ^b Determined by chiral HPLC. ^c Three equivalents of TMSN₃ was used. ^d The absolute configuration was determined as shown.

The Importance of Tamiflu

There are currently 4 drugs for the treatment of influenza infections.

- The neuraminidase inhibitors, Zanamivir (Relenza) and Oseltamivir (Tamiflu), have little toxicity and do not promote drug resistance.
- If the H5N1 virus becomes readily transmitted through humanhuman contact, the treatment of choice would be Tamiflu.

A. Moscona, N. Eng. J. Med., 2005, 353

First Route to Tamiflu

J. Rohloff, J. Org. Chem. 1998, 4545

Second Route to Tamiflu

M. Karpf, J. Org. Chem., 2001, 2044

Third Route to Tamiflu

P. Harrington, Org. Pro. Res. Dev. 2004, 86

Shibasaki Route to Tamiflu

Corey Route to Tamiflu

Conclusion

- The key step in the Shibasaki synthesis are a catalytic enantioselective desymmetrization of a meso-aziridine.
- The key steps in the Corey route are a enantioselective Diels-Alder, iodo-lactamization and bromoacetamidation.
- Both routes offer a new way to access Tamiflu that does not require the use of shikimic acid or quinic acid.
- "Although our route is already very efficient, it's conceivable that when you put new developments together, you'll have an even better and cheaper process. I think the Tamiflu supply problem is solved" E.J. Corey C&E News May 5th, 2006

Though the possibility does exist that each route could be modified, currently due to scalability issues with reagents, neither route offers a viable alternative to process route.