Catalytic Enantioselective Construction of All-Carbon Quaternary Stereocenters: Synthetic and Mechanistic Studies of the C-Acylation of Silyl Ketene Acetals

Ara H. Mermerian and Gregory C. Fu

JACS, **2005**, 127, 5604

Catalytic Asymmetric Synthesis of All-Carbon Quaternary Stereocenters

- While the development of asymmetric oxidation and reduction has become well developed, the same can not be said for the synthesis of all-carbon quaternary stereocenters.
- Some general methods for constructing these centers are Diels-Alder reactions, combinations of chiral carbon nucleophiles with carbon electrophiles or chiral allylmetal electrophiles with carbon nucleophiles, intramolecular Heck reactions and cyclopropanations

Proc. Natl. Acad. Sci. U.S.A., **2004**, 5363 JACS, **124**, 4628 JACS, **125**, 6388

Catalytic Asymmetric Synthesis of All-Carbon Quaternary Stereocenters continued

Reactions of Chiral Carbon Nucleophiles with Carbon Electrophiles

Reactions of Chiral Allylmetal Electrophiles with Carbon Nucleophiles

Angew. Chem. Int. Ed., 25, 476 JACS, 125, 11204 Acc. Chem. Res. 36, 234 Org. Lett. 3, 149 JACS 123, 12907

Catalytic Asymmetric Synthesis of All-Carbon Quaternary Stereocenters continued

Intramolecular Heck Reactions

Cyclopropanation

i) Et₂Zn, Znl₂ (0.1 equiv)

J. Org. Chem. **60**, 4322 JACS, **118**, 10766 JACS, **124**, 9008 J. Org. Chem. **62**, 584 Tet. Asym. **6**, 2157

Earlier Work in this Area in the Fu Group

Table 1. Catalytic Enantioselective Intermolecular C-Acylation of Silyl Ketene Acetals

entry	R^1	R	% ee ^a	% yield ^a
1	Ph	Me	90	80
2	$4-(MeO)C_6H_4$	Me	95	78
3	$4-(F_3C)C_6H_4$	Н	90	84
4	o-tolyl	Me	95	89
5	1-naphthyl	Me	99	82
6	2-thienyl	Me	76	84
7	3-thienyl	Me	87	86
8	3-thienyl	Н	80	73
9	3-(<i>N</i> -methylindolyl)	Me	94	92

^a Average of two runs.

JACS, **2003**, 125, 4050

90% ee

Earlier Work in this Area in the Fu Group continued

Table 1: Reaction of acylating agents with a silyl ketene imine in the presence of a chiral PPY derivative.

Entry	RCOX	ee [%] ^[a]	Yield [%] ^[a]
1	MeO ₂ C(CN)	< 5	81
2	tBuCH ₂ O ₂ CCl	7	61
3	Ac ₂ O	72	64
4	(EtCO) ₂ O	81	85
5	(iPrCO) ₂ O	_	< 5

[a] Average of two runs. TBS = tert-butyldimethylsilyl.

Table 2: Catalytic asymmetric synthesis of all-carbon quaternary stereocenters: variation of the alkyl group of the ketene imine.

Entry	R	ee [%] ^[a]	Yield [%] ^[a]
1	Me	81	89
2	Et	81	85
3	CH ₂ CHMe ₂	83	93
4	CH_2CMe_3	81	52
5	cyclopentyl	69	53

[a] Average of two runs.

Table 3: Catalytic asymmetric synthesis of all-carbon quaternary stereocenters: variation of the aryl group of the ketene imine.

Entry	Ar	ee [%] ^[a]	Yield [%] ^[a]
1	Ph	81	85
2	$4-(MeO)C_6H_4$	81	65
3	$4-(F_3C)C_6H_4$	53	50
4	1-naphthyl	80	78
5	3-thienyl	77	72

[a] Average of two runs.

Angew. Chem. Int. Ed. 2005, 44, 949

Current Paper: Catalytic Enantioselective Construction of All-Carbon Quaternary Centers using Acyclic Silyl Ketene Acetals

Table 1. Catalytic Asymmetric C-Acylations of Acyclic Silyl Ketene Acetals: Effect of the R Group of the Ester on Enantioselectivity^a

entry	R	isomer ratio	% ee	% yield
1	Me	1.5/1	70	87
2	CH_2CMe_3	1.1/1	79	75
3	<i>i</i> -Pr	1.8/1	85	92
4	<i>i-</i> Bu	1.5/1	93	47

^a All data are the average of two runs.

Table 2. Catalytic Asymmetric C-Acylations of Acyclic Silyl Ketene Acetals: Scope with Respect to the Alkyl Substituent^a

Table 3. Catalytic Asymmetric C-Acylations of Acyclic Silyl Ketene Acetals: Scope with Respect to the Aryl Substituent^a

entry	Ar	R	isomer ratio	% ee	% yield
1	Ph	Εt	1.8/1	85	92
2	6-(MeO)-2-naphthyl	Me	1.5/1	90	92
3	$4-(MeO)C_6H_4$	Et	1.4/1	90	83
4	$4-(F_3C)C_6H_4$	Et	2.1/1	92	96
5^b	2-thienyl	Et	10/1	73	68
6 ^c	OSiMe ₃		1.4/1	81	82

^a All data are the average of two runs. ^b The TBS-substituted silyl ketene acetal was employed. ^c CH₂Cl₂ was employed as the solvent.

^a All data are the average of two runs.

Current Paper: Catalytic Cycle and Mechanistic Considerations

$$R^{1} \xrightarrow{R^{2}} OR^{3}$$

$$R^{2} \xrightarrow{R^{2}} - R_{3}SIOCOR$$

$$R^{1} \xrightarrow{R^{2}} OR^{3}$$

$$R^{1} \xrightarrow{R^{2}} OR^{3}$$

$$R^{1} \xrightarrow{R^{2}} OR^{3}$$

$$R^{2} \xrightarrow{R^{2}} OR^{3}$$

$$R^{1} \xrightarrow{R^{2}} OR^{3}$$

$$R^{2} \xrightarrow{R^{2}} OR^{3}$$

$$R^{2} \xrightarrow{R^{2}} OR^{3}$$

Figure 1. Possible Pathway for the Catalytic Asymmetric C—Acylation of Silyl Ketene Acetals: Dual Activation of the Nucleophile and the Electrophile.

Current Paper: Catalytic Cycle and Mechanistic Considerations

$$\begin{array}{c|c}
& & OSiR_3 \\
& R^1 & OR^3 \\
& R^2 \\
& - R_3SIOCOR
\end{array}$$

Table 2. Evidence for Dual Activation: Reactivity of a Silyl Ketene Acetal toward Several Potential Acetylating Agents

OSiMe₃ acetylating agent
$$(\sim 1.2 \text{ equiv})$$
 CD_2CI_2 CD_2CI

entry	acetylating agent	$t_{1/2}$ for reaction
1	Ac_2O	<2% conversion (60 h)
2	Ac ₂ O; 5% (-)- 4	0.3 h
3	(+)-9	<2% conversion (60 h)
4	Ac ₂ O; 5% [Me ₄ N]OAc	<0.1 h

Current Paper: Catalytic Cycle and Mechanistic Considerations

- -The minor isomer of the mixture was determined to be the more reactive isomer of the mixture.
- -The %ee of the product remained constant with time throughout the reaction.
- -These two points have lead to the conclusion that the reaction proceeds through an open transition state that uses the aryl and alkyl group for stereodifferentiation.

Conclusions

- The Fu group has developed an effective catalyst for the formation of all-carbon quaternary stereocenters through C-acylation of silyl ketene acetals.
- Furthermore, they have shed light on the mechanism and catalytic cycle of the reaction.
- Currently, the methodology is limited to silyl ketene acetals bearing an aryl group. The scope of this reaction should be expanded to remove the aryl requirement.

OSiMe₃

Me

Ph

Oi-Pr

Et

$$0i$$
-Pr

 $0i$ -Pr