Heterobimetallic Catalysis in Asymmetric 1,4-Addition of O-Alkylhydroxylamine to Enones

Noriyuki Yamagiwa, Shigeki Matsunaga, and Masakatsu Shibasaki*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received September 23, 2003; E-mail: mshibasa@mol.f.u-tokyo.ac.jp

JACS **2003**, *125*, 16178

Why make □-amino Carbonyl Compounds?

 They are found in a variety of natural products and biologically active compounds.

Taxol 3

Jasplakinolide 6

Cryptophycin 17

Methods for Generation of Enantomerically Enriched —amino acid derivatives

- -amino acids as starting materials
 - Arndt-Eistert

- -amino acids as starting materials
 - Resolution

Methods for Generation of Enantomerically Enriched —amino acid derivatives

• Curtius Rearrangement

156

154

155

157

Methods for Generation of Enantomerically Enriched —amino acid derivatives

• Additions to imines

Methods for Generation of Enantomerically Enriched []-amino acid derivatives

- Conjugate Additions
 - Addition of "Chiral Ammonia" equivalent
 - Addition of Nitrogen nucleophile to chiral enone
 - Asymetric catalysis

Conjugate Additions

• Chiral Ammonia equivalent

Chiral Enone

(A) Matsuyama et al.

(B) Yamamoto et al.

Conjugate Additions

• Asymmetric Catalysis

	R	ee (%) ^d	yield (%) e		R	ee (%) d	yield (%) ^e
8b	Me Et	96 97	96 97	8f		97 95	99 97
8c 8d	n-Pr i-Pr	95 97	97 98	5	CH ₂ OBn Ph ^c	96 58	93 60

JACS, **1999**, *121*, 8959

Conjugate Additions

entry	SM	R ₁	R ₂	product	yield (%)ª	de ^b	ее % ^с
1^d	17	methyl	methyl	19	95	96	96
2	20	methyl	ethyl	31	70	98	86
3	21	methyl	bromo	32	76	99	76
4	22	methyl	phenyl	33	90	95	90
5	23	ethyl	methyl	34	82	96	90
6	24	n-propyl	methyl	35	92	95	89
7^e	25	isopropyl	methyl	36	28	95	81
8f	26	isobutyl	methyl	37	64	95	77
9	27	n-heptyl	methyl	38	73	96	87
10	28	ethyl	ethyl	39	72	96	60
11^e	29	phenyl	methyl	40	38	95	76
12^e	30	phenyl	phenyl	41	49	93	84

• JACS, **2003**, *125*, 11796

Conjugate Additions using Heterobimetallic Catalysis

• Heterobimetallic catalysts exhibit both Lewis acidity and Bronsted basicity.

Conjugate Additions using Heterobimetallic Catalysis

entry	additive	amine: R	catalyst (×mol %)	time (h)	yield (%)	ee (%)
1	none	3a (Me-)	10	24	94	97
2	MS 3A	3a `	10	24	85	96
3	MS 4A	3a	10	24	67	96
4	MS 5A	3a	10	24	44	97
5	Drierite	3a	10	24	94	97
6	Drierite	3b (Bn-)	10	26	91	91
7	Drierite	3a	5	42	94	96
8	Drierite	3a	3	42	97	95
9	Drierite	3a	1	48	95	96
10	Drierite	3a	0.5	80	96	96
11^a	Drierite	3a	1	48	98	95

Conjugate Additions using Heterobimetallic Catalysis

R ¹	O R2 +	(: MeONH ₂ — a (1. 2 equiv)	Drie	a (x mol erite –20 °C	l%) • R¹-	О Н 4	N ^{ON}	Ле	12 13 14 15 ^a 16 ^a	Ph Ph Ph Ph Ph	4-Cl-C ₆ H ₄ 4-Cl-C ₆ H ₄ 4-Me-C ₆ H ₄ 4-MeO-C ₆ H ₄ 4-MeO-C ₆ H ₄	2i 2i 2j 2k 2k	4i 4i 4j 4k 4k	3 1 3 3	48 78 48 82 74	92 97 96 85 85	92 93 96 95 95
		enone			YLB	time	yield	ee	17	Ph	3-NO ₂ -C ₆ H ₄	21	41	3	42	98	81
entry	R1	R²		product	(mol %)	(h)	(%)	(%)	18 19 ^a	Ph Ph	3-Cl-C ₆ H ₄ 2-Cl-C ₆ H ₄	2m 2n	4m 4n	3	48 122	95 92	92 82
1	Ph	Ph	2a	4a	3	42	97	95	20^a	Ph	2-furyl	20	40	3	84	80	92
2	Ph	Ph	2a	4a	1	48	95	96	21	Ph	2-thienyl	2p	4p	3	48	96	95
3	4-Cl-C ₆ H ₄	Ph	2b	4b	3	42	96	96	22^a	Ph	4-pyridyl	^{2}q	4q	3	60	91	85
4	4-Cl-C ₆ H ₄	Ph	2b	4b	1	46	92	96	23^a	Ph	n-C ₅ H ₁₁	2r	4r	3	84	96	84
5	$4-F-C_6H_4$	Ph	2c	4c	3	54	97	96	24^{a}	Ph	<i>i</i> -PrCH ₂	2s	4s	3	48	95	93
6^a	$4-F-C_6H_4$	Ph	2c	4c	1	65	91	96	25	Ph	<i>i</i> -Pr	2t	4t	3	78	97	86
7	$4\text{-Me-C}_6\text{H}_4$	Ph	2d	4d	3	48	96	94	26	Ph	<i>cyclo</i> -hexyl	2u	4u	3	48	98	82
8^a	4-MeO-C ₆ H ₄	Ph	2e	4e	3	74	91	96	27^a	Ph	<i>t</i> -Bu	2v	4v	3	96	57	82
9	3-Me-C ₆ H ₄	Ph	2f	4f	3	48	96	92	28^{b}	Ph	trans-PhCH=H	2w	4w	3	84	91	95
10^{a}	2-furvl	Ph	2σ	4σ	3	48	95	94									

^a 2 equiv of **3a** was used. ^b 3 equiv of **3a** was used.

11a 2-thienyl

Functionalization of Products

Possible Mechanism of Addition using Heterobimetallic Catalyst

	I (%) ee (%) config
1 none 42 t	ice
2 BuLi/BINOL (9/9) 42	12 R
3 Y(HMDS) ₃ /BINOL (3/9) 42 2	16 R
4 YPB 1b (3) 42	12 R
5 YLB 1a (3) 42 9	95 S

Conclusion

- Shibasaki reports a method for the generation of []-amino carbonyl compounds using a cheap nitrogen source with the lowest catalyst loading reported to date.
- Work needs to be done to improve the substrate scope, hopefully toward compounds that can easily be converted to □-amino acid derivatives.
- More mechanistic studies need to be carried out to better define the role of the Lithium in the complex.