A General Model for Selectivity in Olefin Cross Metathesis

R.H. Grubbs, *JACS* ASAP.

Common Metathesis Catalysts

2

3

Examples of Metathesis

3

Ring Opening MetathesisPolymerization

Ring Closing Metathesis

Angew. Chem. Int.Ed. 2003, 42, 1900

Examples of Metathesis Cont.

 Ring Opening/Ring **Closing Metathesis**

Cross Metathesis

Cross Metathesis(CM)

- The mutual exchange of alkylidene fragments between two olefins promoted by metal-carbene complexes
- There are 3 major
 variations on this theme: a)
 CM, b) Ring Opening CM
 and c) intermolecular
 enyne metathesis

a)
$$R^1 + R^2 = R^2 = R^1 + R^2 = R^1$$
b) $C^{X} + R^1 = R^2 = R^1 = R^2$
c) $R^1 = R^2 = R^2 = R^1 = R^2$

Metathesis Mechanism

Problems with CM

- Not a large driving force unlike ROMP or RCM
- Low product selectivity, mixtures of homodimers or polymers can be formed
- Poor Stereoselectivity in the produced olefin.
- Lack of a model that predicts selectivity.

Classification of Olefins for CM

Type I - Rapid homodimerization, homodimers consumable

Type II - Slow homodimerization, homodimers sparingly consumable

Type III - No homodimerization

Type IV - Olefins inert to CM, but do not deactivate catalyst (Spectator)

Reaction between two olefins of Type I = Statistical CM

Reaction between two olefins of same type (non-Type I) = Non-selective

Reaction between olefins of two different types = Selective CM

Olefin type	N N CI, Ph PCy3 1	PCy ₃ CI, Ru CIPh PCy ₃ CH ₃ C	i-Pr N Ph (CF ₃) ₂ O····Mo CH ₃ (3C(CF ₃) ₂ O CH ₃
Type I (fast homodimerization)	terminal olefins, ⁶ 1° allylic alcohols, esters, ^{6h} , ²⁰ allyl boronate esters, ^{6f} allyl halides, ^{6f,6i} styrenes (no large ortho substit.), ^{6c,d,f,i} allyl phosphonates, ^{6d} allyl silanes, ²⁵ allyl phosphine oxides, ^{6h} allyl sulfides, ^{6h} protected allyl amines ^{6h}	terminal olefins, ⁸ allyl silanes, ^{14, 18, 19} 1° allylic alcohols, ethers, esters, ^{8, 19,21} allyl boronate esters, ^{10f} allyl halides ¹⁷	terminal olefins, ^{11a,b,12,14} allyl silanes ^{11b}
Type II (slow homodimerization)	styrenes (large ortho substit.), ^{6d,f} acrylates, ^{6b,i} acrylamides, ^{6c} acrylic acid, ^{6c} acrolein, ^{6b,24} vinyl ketones, ^{6b} unprotected 3° allylic alcohols, ^{6f,h} vinyl epoxides, ^{6b} 2° allylic alcohols, perfluorinated alkane olefins ^{6b,23}	styrene, ¹⁶ 2° allylic alcohols, vinyl dioxolanes, ⁸ vinyl boronates ⁸	styrene, ^{11a,11b} allyl stannanes ¹⁵
Type III (no homodimerization)	1,1-disubstituted olefins, ^{6a,g} non-bulky trisub. olefins, ^{6a,g} vinyl phosphonates, ^{6d} phenyl vinyl sulfone, ²² 4° allylic carbons (all alkyl substituents), 3° allylic alcohols (protected)	vinyl siloxanes ¹⁶	3° allyl amines, ¹⁴ acrylonitrile ¹²
Type IV (spectators to CM)	vinyl nitro olefins, trisubstituted allyl alcohols (protected)	1,1-disubstituted olefins, 8 disub. α , β -unsaturated carbonyls, 4 0 allylic carbon-containing olefins, 8 perfluorinated alkane olefins, 8 30 allyl amines (protected) 14	1,1-disubstituted olefins ^{11a}

CM with Two Type 1 Olefins

Scheme 3. Statistical Distribution of CM Products

Scheme 4. Nonselective Olefin Cross Metathesis

General CM of Type 1 and Type 2/3 Olefins

Primary Reactions in Cross Metathesis of Type I with Type II/III

Results of CM of Type 1 and Type 2/3 Olefins

Entry	2º Allylic Alc.	Cross Partner (Equiv)		Product	Iso. Yield (%)	E/Z ratio ^a
1	BzO	AcO OAc (1	1.8)	BzO OAc	38	18:1
2	BzO	//OAc (2	2.0)	BzO OAc	82	10:1
3	но	OAc (2	2.0)	HO TOAC	92	13:1
4	но	//OAc (1	1.0)	HO OAC	50 62 ^b	14:1 14:1
5	TBDPSO	//OAc (0	0.5)	TBDPSO 8	53	6.7:1

NMR. b Reaction performed at 23 °C.

Allylic Olefin Cross Metathesis^a

Entry	4° Allylic Olefin	Equiv.	CM Partner	Product	Isolated Yield ^b (%)
1	но	2.0	OAc	HO OAC	93
2	\\\/	2.0	OAc	OA	.c 90
3	1	excess	OBz	10 OBz	99
4	\$\sqrt{0}	1.0	OAc	0 11 OAc	91
5		2.0		0>0	70
up			11	13	

Results of CM of Type 2 and Type 3 Olefins

Entry	Type II	Type III (Equiv)		Product	Isolated Yield (%)
1	но	/	(neat)	но	73
2	X		(neat)	X	73
3	5	\sim	(neat)		75
4	но	<u></u>	(4.0)	но	83 ^a
5	0 R	<u></u>	(4.0)		55 ^a R=H 83 ^a R=Me
6	0 R	<u></u>	(4.0)	Ů	26 ^a R=H 68 ^a R=Me
7	5	100 mg	(1.0)	\$\frac{1}{5}\$	67 ^b

Application of Guidelines

Chemoselective CM Based on Olefin Categorization

Chemoselective Cross Metathesis Using Catalysts 2 and 3

(A) Blechert, et al.

(B) Crowe and Zhang

Three Component CM

Scheme 11. Three Component Olefin Cross Metathesis

Table 8. Three Component Olefin Cross Metathesis^a

Entry	Method ^d	CM partner Y	CM partner Z	Ratio (Diene:Y:Z)	Product	Isolated Yield (%)
1	Α	\downarrow		3:neat:1	24	89
2	Α	\swarrow	OEt	3:neat:1	26	Et 60
3	Α	\swarrow	SP OEt	3:neat:1	27 OEt	Et 57 ^b
4	Α	*	OEt	1:neat:1	28	DEt 67°
5	В	Ph	OEt	1:3:1	Ph 29	DEt 34
6	В	Ph	<u></u>	2:3:1	Ph 25	47

^a Using 5-7 mol % of 1 in 0.1-0.2 M refluxing CH₂Cl₂, 12 h. ^b E/Z = 8:1 by ¹H NMR. ^c Reaction at 23 °C. ^d Method A = added all components at one time. Method B = added component Z and then added component Y after 4 h.

Conclusions

- There is now a classification of olefins that allows for some predictive abilities in CM.
- These classifications are based on rate of homodimerization and can be influenced by steric and electronic effects as well as protection of alcohols.
- More work needs to be done to develop a model that is more quantitative and less qualitative