Total Synthesis of (-)-Himgaline

Unmesh Shah, Samuel Chackalamannil,* Ashit K. Ganguly,* Mariappan Chelliah, Sergei Kolotuchin, Alexei Buevich, and Andrew McPhail *JACS*, ASAP

William Paquette
9-30-06 Literature Presentation
Wipf Group

Structurally Complex Alkaloids Isolated from the Tree, Galbulimima belgraveana

A Few Representative Examples from the 28 Novel Structures Isolated

Structure elucidation was conducted utilizing exhaustive degradation studies

Mander, L. N.; Prager, R. H.; Rasmussen, M.; Ritchie, E.; Taylor, W. C. Aus. J. Chem. 1967, 20, 1705.

Is this Merely a Challenge for Synthetic Chemists? Or is there also Therapeutic Value?

Some Muscarinic Antagonists Some Antithrombotic Agents (aka anticoagulants)

Thrombosis is the formation of clots within blood vessels or veins

Heparin – A glycosaminoglycan

 Some anticoagulants suffer from low efficacy and oral bioavailability

- •Himbacine is a potent inhibitor of the muscarinic receptor M2 by ceasing the release of acetylcholine and may serve as a potential lead for Alzheimer's therapy
- Muscarinic receptors are present in the CNS and play various roles including cognitive thinking and memory
- Himbacine also demonstrates potential antithrombotic activity

Why are Anticoagulant/Antithrombotic Agents Important?

Some Thrombotic Diseases

- •<u>Deep venous thrombosis (DVT)</u> formation of a clot in a deep vein (typically in the legs which causes discomfort and may become more severe if embolism occurs)
- •Renal vein thrombosis leads to reduction in drainage of the kidney (can affect urination)
 - •<u>Atherosclerosis</u> disease regarding hardening of arteries (underlying cause of strokes and heart attacks)
 - •According to NIH, about 2 million people get DVT and 60,000 die from pulmonary embolism per year
- •Diseases caused by atherosclerosis are the leading cause of illness and death in the US (NIH)

Development of Orally Active Antithrombotic Agents Synthesis of Himbacine Analogues

Chackalamannil, S.; et. al. *J. Med. Chem.* **2005**, *48*, 5884.

Pharmacological Profile of Himbacine Analogues

Table 2. SAR of 5-Aryl Substituted Pyridine Derivatives (Compound Type B)

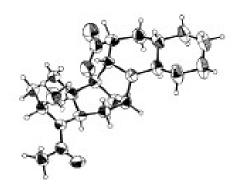
compd	Ar	$rac{ ext{IC}_{50}}{(ext{nM})^a}$	$\operatorname{rat}\operatorname{PK}^b$ $\operatorname{AUC},C_{\operatorname{max}}$
(+)-35	Ph	27	917, 453
(\pm) -36	(p-CH ₃)-phenyl	325	ND
$(\pm)-37$	(p-OCH ₃)-phenyl	204	ND
(\pm) -38	(p-F)-phenyl	467	ND
(\pm) -39	(p-Cl)-phenyl	1000	ND
$(\pm)-40$	$(p\text{-}\mathrm{CF}_3)$ -phenyl	>300	ND
(+)-41	(o-CH ₃)-phenyl	14	2805, 1222
(+)-42	(o-CF ₃)-phenyl	46	2350, 1004
(+)-43	(o-CO ₂ Et)-phenyl	44	ND
(+)-44	(o-OCH ₃)-phenyl	11	413,419
(+)-45	(o-F)-phenyl	22	2467, 1077
(+)-46	(o-Cl)-phenyl	26	4285, 1785
(+)-47	(m-F)-phenyl	35	3553, 1516
(+)-48	(m-Cl)-phenyl	10	4112, 1457
(+)-49	(m-Br)-phenyl	25	ND
(+)-50	(m-CN)-phenyl	25	ND
(+)-51	$(m-\mathrm{CH_3})$ -phenyl	13	331, 380
(+)-52	(m-iPr)-phenyl	19	258,289
(+)-53	$(m\text{-}OCH_3)$ -phenyl	28	12, 20
(+)-54	$(m-SO_2NH_2)$ -phenyl	100	ND
(+)-55	$(m-\mathrm{CF}_3)$ -phenyl	11	6116, 2300

 a PAR-1 binding as say ligand: [³H]haTRAP, 10 nM $(K_{\rm d}=15$ nM). 30 b Compounds were dosed in 20% HPBCD. AUC measurements are given in nM·h and $C_{\rm max}$ in nM.

Table 1. SAR of Non-Aryl Substituted Pyridine Derivatives (Compound Type A)

compd	R	${ m IC_{50}} \ ({ m nM})^a$	compd	R	$rac{ m IC_{50}}{({ m nM})^a}$
	2222	2 2			1500 15
(\pm) -12	6-CH_3	300	(\pm) -25	6-cy-Pr	210
$(\pm)-14$	H	4000	(\pm) -26	6-NHCH ₃	1250
$(\pm)-15$	$3-CH_3$	>5000	$(\pm)-27$	6-CH ₂ OH	1500
$(\pm)-16$	$4-CH_3$	2100	$(\pm)-28$	6-CH ₂ OCH ₃	850
$(\pm)-17$	$5-CH_3$	1100	$(\pm)-29$	6-CH ₂ Ph	900
$(\pm)-18$	6-Et	85	$(\pm)-30$	6-OCH ₃	inactive
$(\pm)-19$	6-vinyl	150	(\pm) -31	6-Ph	inactive
$(\pm)-20$	6-n-Pr	250	(\pm) -32	5-Bn	3681
$(\pm)-21$	6-n-Bu	143	(\pm) -33	5-OCH ₃	325
$(\pm)-22$	6-n-hex	3500	(\pm) -34	5-OBn	19
$(\pm)-23$	6 - i - \Pr	725	(+)-35	5-Ph	27
$(\pm)-24$	6- <i>i</i> -Bu	550			

 a PAR-1 binding as say ligand: [³H]haTRAP, 10 nM $(K_{\rm d}=15~{\rm nM}).^{30}$


PAR's are activated by thrombin (a coagulation protein) upon cleavage of the N-terminus of the receptor causing a cascade of events leading to thrombosis or clotting

Total Synthesis of (-)-Himgaline Retrosynthetic Analysis

•The pharmacological properties of (-)-himgaline and GB 13 are currently unexplored

Construction of the Pentacyclic Core

Elaboration of the Complex Pentacyclic Structure Formation of the Crucial Piperidine Moiety

Crystal structure of N-acetyl compound

A Series of "Fortunate" Events Completion of (-)-Himgaline

Summary

- •Total synthesis of (-)-himgaline is the first to be reported
- -Highlighted by an intramolecular Aza-Michael/decarboxylation/retro-Michael cascade
 - •(-)-Himgaline and GB 13 represent a class of molecules that warrant biological studies to determine their potential biological activity
 - •Himbacine analogue (SCH 205831) is currently the most potent orally active PAR-1 antagonist
- •The development of chemotherapies toward Alzheimer's and thrombotic diseases continues to remain a high priority among the pharmaceutical and biotechnology sectors